514 research outputs found

    Instance-based concept learning from multiclass DNA microarray data

    Get PDF
    BACKGROUND: Various statistical and machine learning methods have been successfully applied to the classification of DNA microarray data. Simple instance-based classifiers such as nearest neighbor (NN) approaches perform remarkably well in comparison to more complex models, and are currently experiencing a renaissance in the analysis of data sets from biology and biotechnology. While binary classification of microarray data has been extensively investigated, studies involving multiclass data are rare. The question remains open whether there exists a significant difference in performance between NN approaches and more complex multiclass methods. Comparative studies in this field commonly assess different models based on their classification accuracy only; however, this approach lacks the rigor needed to draw reliable conclusions and is inadequate for testing the null hypothesis of equal performance. Comparing novel classification models to existing approaches requires focusing on the significance of differences in performance. RESULTS: We investigated the performance of instance-based classifiers, including a NN classifier able to assign a degree of class membership to each sample. This model alleviates a major problem of conventional instance-based learners, namely the lack of confidence values for predictions. The model translates the distances to the nearest neighbors into 'confidence scores'; the higher the confidence score, the closer is the considered instance to a pre-defined class. We applied the models to three real gene expression data sets and compared them with state-of-the-art methods for classifying microarray data of multiple classes, assessing performance using a statistical significance test that took into account the data resampling strategy. Simple NN classifiers performed as well as, or significantly better than, their more intricate competitors. CONCLUSION: Given its highly intuitive underlying principles – simplicity, ease-of-use, and robustness – the k-NN classifier complemented by a suitable distance-weighting regime constitutes an excellent alternative to more complex models for multiclass microarray data sets. Instance-based classifiers using weighted distances are not limited to microarray data sets, but are likely to perform competitively in classifications of high-dimensional biological data sets such as those generated by high-throughput mass spectrometry

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    ANMM4CBR: a case-based reasoning method for gene expression data classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate classification of microarray data is critical for successful clinical diagnosis and treatment. The "curse of dimensionality" problem and noise in the data, however, undermines the performance of many algorithms.</p> <p>Method</p> <p>In order to obtain a robust classifier, a novel Additive Nonparametric Margin Maximum for Case-Based Reasoning (ANMM4CBR) method is proposed in this article. ANMM4CBR employs a case-based reasoning (CBR) method for classification. CBR is a suitable paradigm for microarray analysis, where the rules that define the domain knowledge are difficult to obtain because usually only a small number of training samples are available. Moreover, in order to select the most informative genes, we propose to perform feature selection via additively optimizing a nonparametric margin maximum criterion, which is defined based on gene pre-selection and sample clustering. Our feature selection method is very robust to noise in the data.</p> <p>Results</p> <p>The effectiveness of our method is demonstrated on both simulated and real data sets. We show that the ANMM4CBR method performs better than some state-of-the-art methods such as support vector machine (SVM) and <it>k </it>nearest neighbor (<it>k</it>NN), especially when the data contains a high level of noise.</p> <p>Availability</p> <p>The source code is attached as an additional file of this paper.</p

    Simple but Not Simplistic: Reducing the Complexity of Machine Learning Methods

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Resumo] A chegada do Big Data e a explosión do Internet das cousas supuxeron un gran reto para os investigadores en Aprendizaxe Automática, facendo que o proceso de aprendizaxe sexa mesmo roáis complexo. No mundo real, os problemas da aprendizaxe automática xeralmente teñen complexidades inherentes, como poden ser as características intrínsecas dos datos, o gran número de mostras, a alta dimensión dos datos de entrada, os cambios na distribución entre o conxunto de adestramento e test, etc. Todos estes aspectos son importantes, e requiren novoS modelos que poi dan facer fronte a estas situacións. Nesta tese, abordáronse todos estes problemas, tratando de simplificar o proceso de aprendizaxe automática no escenario actual. En primeiro lugar, realízase unha análise de complexidade para observar como inflúe esta na tarefa de clasificación, e se é posible que a aplicación dun proceso previo de selección de características reduza esta complexidade. Logo, abórdase o proceso de simplificación da fase de aprendizaxe automática mediante a filosofía divide e vencerás, usando un enfoque distribuído. Seguidamente, aplicamos esa mesma filosofía sobre o proceso de selección de características. Finalmente, optamos por un enfoque diferente seguindo a filosofía do Edge Computing, a cal permite que os datos producidos polos dispositivos do Internet das cousas se procesen máis preto de onde se crearon. Os enfoques propostos demostraron a súa capacidade para reducir a complexidade dos métodos de aprendizaxe automática tradicionais e, polo tanto, espérase que a contribución desta tese abra as portas ao desenvolvemento de novos métodos de aprendizaxe máquina máis simples, máis robustos, e máis eficientes computacionalmente.[Resumen] La llegada del Big Data y la explosión del Internet de las cosas han supuesto un gran reto para los investigadores en Aprendizaje Automático, haciendo que el proceso de aprendizaje sea incluso más complejo. En el mundo real, los problemas de aprendizaje automático generalmente tienen complejidades inherentes) como pueden ser las características intrínsecas de los datos, el gran número de muestras, la alta dimensión de los datos de entrada, los cambios en la distribución entre el conjunto de entrenamiento y test, etc. Todos estos aspectos son importantes, y requieren nuevos modelos que puedan hacer frente a estas situaciones. En esta tesis, se han abordado todos estos problemas, tratando de simplificar el proceso de aprendizaje automático en el escenario actual. En primer lugar, se realiza un análisis de complejidad para observar cómo influye ésta en la tarea de clasificación1 y si es posible que la aplicación de un proceso previo de selección de características reduzca esta complejidad. Luego, se aborda el proceso de simplificación de la fase de aprendizaje automático mediante la filosofía divide y vencerás, usando un enfoque distribuido. A continuación, aplicamos esa misma filosofía sobre el proceso de selección de características. Finalmente, optamos por un enfoque diferente siguiendo la filosofía del Edge Computing, la cual permite que los datos producidos por los dispositivos del Internet de las cosas se procesen más cerca de donde se crearon. Los enfoques propuestos han demostrado su capacidad para reducir la complejidad de los métodos de aprendizaje automático tnidicionales y, por lo tanto, se espera que la contribución de esta tesis abra las puertas al desarrollo de nuevos métodos de aprendizaje máquina más simples, más robustos, y más eficientes computacionalmente.[Abstract] The advent of Big Data and the explosion of the Internet of Things, has brought unprecedented challenges to Machine Learning researchers, making the learning task more complexo Real-world machine learning problems usually have inherent complexities, such as the intrinsic characteristics of the data, large number of instauces, high input dimensionality, dataset shift, etc. AH these aspects matter, and can fOI new models that can confront these situations. Thus, in this thesis, we have addressed aH these issues) simplifying the machine learning process in the current scenario. First, we carry out a complexity analysis to see how it inftuences the classification models, and if it is possible that feature selection might result in a deerease of that eomplexity. Then, we address the proeess of simplifying learning with the divide-and-conquer philosophy of the distributed approaeh. Later, we aim to reduce the complexity of the feature seleetion preprocessing through the same philosophy. FinallYl we opt for a different approaeh following the eurrent philosophy Edge eomputing, whieh allows the data produeed by Internet of Things deviees to be proeessed closer to where they were ereated. The proposed approaehes have demonstrated their eapability to reduce the complexity of traditional maehine learning algorithms, and thus it is expeeted that the eontribution of this thesis will open the doors to the development of new maehine learning methods that are simpler, more robust, and more eomputationally efficient

    On developing an automatic threshold applied to feature selection ensembles

    Get PDF
    © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article "R.-J. Palma-Mendoza, L. de-Marcos, D. Rodriguez, y A. Alonso-Betanzos, «B. Seijo-Pardo, V. Bolón-Canedo, y A. Alonso-Betanzos, «On developing an automatic threshold applied to feature selection ensembles», Information Fusion, vol. 45, pp. 227-245, ene. 2019" has been accepted for publication in Information Fusion. The Version of Record is available online at https://doi.org/10.1016/j.inffus.2018.02.007[Abstract]: Feature selection ensemble methods are a recent approach aiming at adding diversity in sets of selected features, improving performance and obtaining more robust and stable results. However, using an ensemble introduces the need for an aggregation step to combine all the output methods that confirm the ensemble. Besides, when trying to improve computational efficiency, ranking methods that order all initial features are preferred, and so an additional thresholding step is also mandatory. In this work two different ensemble designs based on ranking methods are described. The main difference between them is the order in which the combination and thresholding steps are performed. In addition, a new automatic threshold based on the combination of three data complexity measures is proposed and compared with traditional thresholding approaches based on retaining a fixed percentage of features. The behavior of these methods was tested, according to the SVM classification accuracy, with satisfactory results, for three different scenarios: synthetic datasets and two types of real datasets (where sample size is much higher than feature size, and where feature size is much higher than sample size).This research has been financially supported in part by the Spanish Ministerio de Economa y Competitividad (research project TIN 2015-65069-C2-1-R), by the Xunta de Galicia (research projects GRC2014/035 and the Centro Singular de Investigación de Galicia, accreditation 2016–2019) and by the European Union (FEDER/ERDF).Xunta de Galicia; GRC2014/03

    Restricting Supervised Learning: Feature Selection and Feature Space Partition

    Get PDF
    Many supervised learning problems are considered difficult to solve either because of the redundant features or because of the structural complexity of the generative function. Redundant features increase the learning noise and therefore decrease the prediction performance. Additionally, a number of problems in various applications such as bioinformatics or image processing, whose data are sampled in a high dimensional space, suffer the curse of dimensionality, and there are not enough observations to obtain good estimates. Therefore, it is necessary to reduce such features under consideration. Another issue of supervised learning is caused by the complexity of an unknown generative model. To obtain a low variance predictor, linear or other simple functions are normally suggested, but they usually result in high bias. Hence, a possible solution is to partition the feature space into multiple non-overlapping regions such that each region is simple enough to be classified easily. In this dissertation, we proposed several novel techniques for restricting supervised learning problems with respect to either feature selection or feature space partition. Among different feature selection methods, 1-norm regularization is advocated by many researchers because it incorporates feature selection as part of the learning process. We give special focus here on ranking problems because very little work has been done for ranking using L1 penalty. We present here a 1-norm support vector machine method to simultaneously find a linear ranking function and to perform feature subset selection in ranking problems. Additionally, because ranking is formulated as a classification task when pair-wise data are considered, it increases the computational complexity from linear to quadratic in terms of sample size. We also propose a convex hull reduction method to reduce this impact. The method was tested on one artificial data set and two benchmark real data sets, concrete compressive strength set and Abalone data set. Theoretically, by tuning the trade-off parameter between the 1-norm penalty and the empirical error, any desired size of feature subset could be achieved, but computing the whole solution path in terms of the trade-off parameter is extremely difficult. Therefore, using 1-norm regularization alone may not end up with a feature subset of small size. We propose a recursive feature selection method based on 1-norm regularization which can handle the multi-class setting effectively and efficiently. The selection is performed iteratively. In each iteration, a linear multi-class classifier is trained using 1-norm regularization, which leads to sparse weight vectors, i.e., many feature weights are exactly zero. Those zero-weight features are eliminated in the next iteration. The selection process has a fast rate of convergence. We tested our method on an earthworm microarray data set and the empirical results demonstrate that the selected features (genes) have very competitive discriminative power. Feature space partition separates a complex learning problem into multiple non-overlapping simple sub-problems. It is normally implemented in a hierarchical fashion. Different from decision tree, a leaf node of this hierarchical structure does not represent a single decision, but represents a region (sub-problem) that is solvable with respect to linear functions or other simple functions. In our work, we incorporate domain knowledge in the feature space partition process. We consider domain information encoded by discrete or categorical attributes. A discrete or categorical attribute provides a natural partition of the problem domain, and hence divides the original problem into several non-overlapping sub-problems. In this sense, the domain information is useful if the partition simplifies the learning task. However it is not trivial to select the discrete or categorical attribute that maximally simplify the learning task. A naive approach exhaustively searches all the possible restructured problems. It is computationally prohibitive when the number of discrete or categorical attributes is large. We describe a metric to rank attributes according to their potential to reduce the uncertainty of a classification task. It is quantified as a conditional entropy achieved using a set of optimal classifiers, each of which is built for a sub-problem defined by the attribute under consideration. To avoid high computational cost, we approximate the solution by the expected minimum conditional entropy with respect to random projections. This approach was tested on three artificial data sets, three cheminformatics data sets, and two leukemia gene expression data sets. Empirical results demonstrate that our method is capable of selecting a proper discrete or categorical attribute to simplify the problem, i.e., the performance of the classifier built for the restructured problem always beats that of the original problem. Restricting supervised learning is always about building simple learning functions using a limited number of features. Top Selected Pair (TSP) method builds simple classifiers based on very few (for example, two) features with simple arithmetic calculation. However, traditional TSP method only deals with static data. In this dissertation, we propose classification methods for time series data that only depend on a few pairs of features. Based on the different comparison strategies, we developed the following approaches: TSP based on average, TSP based on trend, and TSP based on trend and absolute difference amount. In addition, inspired by the idea of using two features, we propose a time series classification method based on few feature pairs using dynamic time warping and nearest neighbor

    Genetic algorithm-neural network: feature extraction for bioinformatics data.

    Get PDF
    With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data

    Gene Expression Analysis Methods on Microarray Data a A Review

    Get PDF
    In recent years a new type of experiments are changing the way that biologists and other specialists analyze many problems. These are called high throughput experiments and the main difference with those that were performed some years ago is mainly in the quantity of the data obtained from them. Thanks to the technology known generically as microarrays, it is possible to study nowadays in a single experiment the behavior of all the genes of an organism under different conditions. The data generated by these experiments may consist from thousands to millions of variables and they pose many challenges to the scientists who have to analyze them. Many of these are of statistical nature and will be the center of this review. There are many types of microarrays which have been developed to answer different biological questions and some of them will be explained later. For the sake of simplicity we start with the most well known ones: expression microarrays
    • …
    corecore