332,886 research outputs found

    Instance-based Deep Transfer Learning

    Full text link
    Deep transfer learning recently has acquired significant research interest. It makes use of pre-trained models that are learned from a source domain, and utilizes these models for the tasks in a target domain. Model-based deep transfer learning is probably the most frequently used method. However, very little research work has been devoted to enhancing deep transfer learning by focusing on the influence of data. In this paper, we propose an instance-based approach to improve deep transfer learning in a target domain. Specifically, we choose a pre-trained model from a source domain and apply this model to estimate the influence of training samples in a target domain. Then we optimize the training data of the target domain by removing the training samples that will lower the performance of the pre-trained model. We later either fine-tune the pre-trained model with the optimized training data in the target domain, or build a new model which is initialized partially based on the pre-trained model, and fine-tune it with the optimized training data in the target domain. Using this approach, transfer learning can help deep learning models to capture more useful features. Extensive experiments demonstrate the effectiveness of our approach on boosting the quality of deep learning models for some common computer vision tasks, such as image classification.Comment: Accepted to WACV 2019. This is a preprint versio

    Grounding Language for Transfer in Deep Reinforcement Learning

    Full text link
    In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.Comment: JAIR 201
    • …
    corecore