322,376 research outputs found

    Complexity of the XY antiferromagnet at fixed magnetization

    Get PDF
    We prove that approximating the ground energy of the antiferromagnetic XY model on a simple graph at fixed magnetization (given as part of the instance specification) is QMA-complete. To show this, we strengthen a previous result by establishing QMA-completeness for approximating the ground energy of the Bose-Hubbard model on simple graphs. Using a connection between the XY and Bose-Hubbard models that we exploited in previous work, this establishes QMA-completeness of the XY model

    Finite and infinite support in nominal algebra and logic: nominal completeness theorems for free

    Full text link
    By operations on models we show how to relate completeness with respect to permissive-nominal models to completeness with respect to nominal models with finite support. Models with finite support are a special case of permissive-nominal models, so the construction hinges on generating from an instance of the latter, some instance of the former in which sufficiently many inequalities are preserved between elements. We do this using an infinite generalisation of nominal atoms-abstraction. The results are of interest in their own right, but also, we factor the mathematics so as to maximise the chances that it could be used off-the-shelf for other nominal reasoning systems too. Models with infinite support can be easier to work with, so it is useful to have a semi-automatic theorem to transfer results from classes of infinitely-supported nominal models to the more restricted class of models with finite support. In conclusion, we consider different permissive-nominal syntaxes and nominal models and discuss how they relate to the results proved here

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same

    The exchange-stable marriage problem

    Get PDF
    In this paper we consider instances of stable matching problems, namely the classical stable marriage (SM) and stable roommates (SR) problems and their variants. In such instances we consider a stability criterion that has recently been proposed, that of <i>exchange-stability</i>. In particular, we prove that ESM — the problem of deciding, given an SM instance, whether an exchange-stable matching exists — is NP-complete. This result is in marked contrast with Gale and Shapley's classical linear-time algorithm for finding a stable matching in an instance of SM. We also extend the result for ESM to the SR case. Finally, we study some variants of ESM under weaker forms of exchange-stability, presenting both polynomial-time solvability and NP-completeness results for the corresponding existence questions

    Allocation of Heterogeneous Resources of an IoT Device to Flexible Services

    Full text link
    Internet of Things (IoT) devices can be equipped with multiple heterogeneous network interfaces. An overwhelmingly large amount of services may demand some or all of these interfaces' available resources. Herein, we present a precise mathematical formulation of assigning services to interfaces with heterogeneous resources in one or more rounds. For reasonable instance sizes, the presented formulation produces optimal solutions for this computationally hard problem. We prove the NP-Completeness of the problem and develop two algorithms to approximate the optimal solution for big instance sizes. The first algorithm allocates the most demanding service requirements first, considering the average cost of interfaces resources. The second one calculates the demanding resource shares and allocates the most demanding of them first by choosing randomly among equally demanding shares. Finally, we provide simulation results giving insight into services splitting over different interfaces for both cases.Comment: IEEE Internet of Things Journa

    Support theorems in abstract settings

    Get PDF
    In this paper we establish a general framework in which the verification of support theorems for generalized convex functions acting between an algebraic structure and an ordered algebraic structure is still possible. As for the domain space, we allow algebraic structures equipped with families of algebraic operations whose operations are mutually distributive with respect to each other. We introduce several new concepts in such algebraic structures, the notions of convex set, extreme set, and interior point with respect to a given family of operations, furthermore, we describe their most basic and required properties. In the context of the range space, we introduce the notion of completeness of a partially ordered set with respect to the existence of the infimum of lower bounded chains, we also offer several sufficient condition which imply this property. For instance, the order generated by a sharp cone in a vector space turns out to possess this completeness property. By taking several particular cases, we deduce support and extension theorems in various classical and important settings
    corecore