63,557 research outputs found

    Instance generation via generator instances

    Get PDF
    Funding: UK EPSRC grant EP/P015638/1.Access to good benchmark instances is always desirable when developing new algorithms, new constraint models, or when comparing existing ones. Hand-written instances are of limited utility and are time-consuming to produce. A common method for generating instances is constructing special purpose programs for each class of problems. This can be better than manually producing instances, but developing such instance generators also has drawbacks. In this paper, we present a method for generating graded instances completely automatically starting from a class-level problem specification. A graded instance in our present setting is one which is neither too easy nor too difficult for a given solver. We start from an abstract problem specification written in the Essence language and provide a system to transform the problem specification, via automated type-specific rewriting rules, into a new abstract specification which we call a generator specification. The generator specification is itself parameterised by a number of integer parameters; these are used to characterise a certain region of the parameter space. The solutions of each such generator instance form valid problem instances. We use the parameter tuner irace to explore the space of possible generator parameters, aiming to find parameter values that yield graded instances. We perform an empirical evaluation of our system for five problem classes from CSPlib, demonstrating promising results.Postprin

    gMark: Schema-Driven Generation of Graphs and Queries

    Full text link
    Massive graph data sets are pervasive in contemporary application domains. Hence, graph database systems are becoming increasingly important. In the experimental study of these systems, it is vital that the research community has shared solutions for the generation of database instances and query workloads having predictable and controllable properties. In this paper, we present the design and engineering principles of gMark, a domain- and query language-independent graph instance and query workload generator. A core contribution of gMark is its ability to target and control the diversity of properties of both the generated instances and the generated workloads coupled to these instances. Further novelties include support for regular path queries, a fundamental graph query paradigm, and schema-driven selectivity estimation of queries, a key feature in controlling workload chokepoints. We illustrate the flexibility and practical usability of gMark by showcasing the framework's capabilities in generating high quality graphs and workloads, and its ability to encode user-defined schemas across a variety of application domains.Comment: Accepted in November 2016. URL: http://ieeexplore.ieee.org/document/7762945/. in IEEE Transactions on Knowledge and Data Engineering 201
    • …
    corecore