890 research outputs found

    The American Multi-modal Energy System: Model Development with Structural and Behavioral Analysis using Hetero-functional Graph Theory

    Get PDF
    In the 21st century, infrastructure is playing an ever greater role in our daily lives. Presidential Policy Directive 21 emphasizes that infrastructure is critical to public confidence, the nation\u27s safety, and its well-being. With global climate change demanding a host of changes across at least four critical energy infrastructures: the electric grid, the natural gas system, the oil system, and the coal system, it is imperative to study models of these infrastructures to guide future policies and infrastructure developments. Traditionally these energy systems have been studied independently, usually in their own fields of study. Therefore, infrastructure datasets often lack the structural and dynamic elements to describe the interdependencies with other infrastructures. This thesis refers to the integration of the aforementioned energy infrastructures into a singular system-of-systems within the context of the United States of America as the American Multi-modal Energy System (AMES). This work develops an open-source structural and behavioral model of the AMES using Hetero-functional Graph Theory (HFGT), a data-driven approach, and model-based systems engineering practices in the following steps. First, the HFGT toolbox code is made available on GitHub and advanced to produce HFGs of systems on the scale of the AMES using the languages Python and Julia. Second, the analytical insights that HFGs can provide relative to formal graphs are investigated through structural analysis of the American Electric Power System which demonstrates how HFGs are better equipped to describe changes in system behavior. Third, a reference architecture of the AMES is developed, providing a standardized foundation to develop future models of the AMES. Fourth, the AMES reference architecture is instantiated into a structural model from which structural properties are investigated. Finally, a physically informed Weighted Least Squares Error Hetero-functional Graph State Estimation analysis of the AMES\u27 socio-economic behavior is implemented to investigate the behavior of the AMES with asset level granularity. These steps provide a reproducible and reusable structural and behavioral model of the AMES for guiding future policies and infrastructural developments to critical energy infrastructures

    Energy Management of Distributed Generation Systems

    Get PDF
    The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation
    • …
    corecore