18,833 research outputs found

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Corporate Social Responsibility: the institutionalization of ESG

    Get PDF
    Understanding the impact of Corporate Social Responsibility (CSR) on firm performance as it relates to industries reliant on technological innovation is a complex and perpetually evolving challenge. To thoroughly investigate this topic, this dissertation will adopt an economics-based structure to address three primary hypotheses. This structure allows for each hypothesis to essentially be a standalone empirical paper, unified by an overall analysis of the nature of impact that ESG has on firm performance. The first hypothesis explores the evolution of CSR to the modern quantified iteration of ESG has led to the institutionalization and standardization of the CSR concept. The second hypothesis fills gaps in existing literature testing the relationship between firm performance and ESG by finding that the relationship is significantly positive in long-term, strategic metrics (ROA and ROIC) and that there is no correlation in short-term metrics (ROE and ROS). Finally, the third hypothesis states that if a firm has a long-term strategic ESG plan, as proxied by the publication of CSR reports, then it is more resilience to damage from controversies. This is supported by the finding that pro-ESG firms consistently fared better than their counterparts in both financial and ESG performance, even in the event of a controversy. However, firms with consistent reporting are also held to a higher standard than their nonreporting peers, suggesting a higher risk and higher reward dynamic. These findings support the theory of good management, in that long-term strategic planning is both immediately economically beneficial and serves as a means of risk management and social impact mitigation. Overall, this contributes to the literature by fillings gaps in the nature of impact that ESG has on firm performance, particularly from a management perspective

    Subsidiary Entrepreneurial Alertness: Antecedents and Outcomes

    Get PDF
    This thesis brings together concepts from both international business and entrepreneurship to develop a framework of the facilitators of subsidiary innovation and performance. This study proposes that Subsidiary Entrepreneurial Alertness (SEA) facilitates the recognition of opportunities (the origin of subsidiary initiatives). First introduced by Kirzner (1979) in the context of the individual, entrepreneurial alertness (EA) is the ability to notice an opportunity without actively searching. Similarly, to entrepreneurial alertness at the individual level, this study argues that SEA enables the subsidiary to best select opportunities based on resources available. The research further develops our conceptualisation of SEA by drawing on work by Tang et al. (2012) identifying three distinct activities of EA: scanning and search (identifying opportunities unseen by others due to their awareness gaps), association and connection of information, and evaluation and judgement to interpret or anticipate future viability of opportunities. This study then hypothesises that SEA leads to opportunity recognition at the subsidiary level and further hypothesises innovation and performance as outcomes of opportunity recognition. This research brings these arguments together to develop and test a comprehensive theoretical model. The theoretical model is tested through a mail survey of the CEOs/MDs of foreign subsidiaries within the Republic of Ireland (an innovative hub for foreign subsidiaries). This method was selected as the best method to reach the targeted respondent, and due to the depth of knowledge the target respondent holds, the survey can answer the desired question more substantially. The results were examined using partial least squares structural equation modelling (PLS-SEM). The study’s findings confirm two critical aspects of subsidiary context, subsidiary brokerage and subsidiary credibility are positively related to SEA. The study establishes a positive link between SEA and both the generation of innovation and the subsidiary’s performance. This thesis makes three significant contributions to the subsidiary literature as it 1) introduces and develops the concept of SEA, 2) identifies the antecedents of SEA, and 3) demonstrates the impact of SEA on subsidiary opportunity recognition. Implications for subsidiaries, headquarters and policy makers are discussed along with the limitations of the study

    Model-Independent Determination of H0H_0 and ΩK,0\Omega_{K,0} using Time-Delay Galaxy Lenses and Gamma-Ray Bursts

    Full text link
    Combining the `time-delay distance' (DΔtD_{\Delta t}) measurements from galaxy lenses and other distance indicators provides model-independent determinations of the Hubble constant (H0H_0) and spatial curvature (ΩK,0\Omega_{K,0}), only based on the validity of the Friedmann-Lema\^itre-Robertson-Walker (FLRW) metric and geometrical optics. To take the full merit of combining DΔtD_{\Delta t} measurements in constraining H0H_0, we use gamma-ray burst (GRB) distances to extend the redshift coverage of lensing systems much higher than that of Type Ia Supernovae (SNe Ia) and even higher than quasars, whilst the general cosmography with a curvature component is implemented for the GRB distance parametrizations. Combining Lensing+GRB yields H0=71.53.0+4.4H_0=71.5^{+4.4}_{-3.0}~km s1^{-1}Mpc1^{-1} and ΩK,0=0.070.06+0.13\Omega_{K,0} = -0.07^{+0.13}_{-0.06} (1σ\sigma). A flat-universe prior gives slightly an improved H0=70.92.9+4.2H_0 = 70.9^{+4.2}_{-2.9}~km s1^{-1}Mpc1^{-1}. When combining Lensing+GRB+SN Ia, the error bar ΔH0\Delta H_0 falls by 25\%, whereas ΩK,0\Omega_{K,0} is not improved due to the degeneracy between SN Ia absolute magnitude, MBM_B, and H0H_0 along with the mismatch between the SN Ia and GRB Hubble diagrams at z1.4z\gtrsim 1.4. Future increment of GRB observations can help to moderately eliminate the MBH0M_B-H_0 degeneracy in SN Ia distances and ameliorate the restrictions on cosmographic parameters along with ΩK,0\Omega_{K,0} when combining Lensing+SN Ia+GRB. We conclude that there is no evidence of significant deviation from a (an) flat (accelerating) universe and H0H_0 is currently determined at 3\% precision. The measurements show great potential to arbitrate the H0H_0 tension between the local distance ladder and cosmic microwave background measurements and provide a relevant consistency test of the FLRW metric.Comment: Accepted for publication in MNRA

    Physical model of end-diastolic and end-systolic pressure-volume relationships of a heart

    Full text link
    Left ventricular (LV) stiffness and contractility, characterized by the end-diastolic and end-systolic pressure-volume relationships (EDPVR & ESPVR), are two important indicators of the performance of the human heart. Although much research has been conducted on EDPVR and ESPVR, no model with physically interpretable parameters combining both relationships has been presented, thereby impairing the understanding of cardiac physiology and pathology. Here, we present a model that evaluates both EDPVR and ESPVR with physical interpretations of the parameters in a unified framework. Our physics-based model fits the available experimental data and in silico results very well and outperforms existing models. With prescribed parameters, the new model is used to predict the pressure-volume relationships of the left ventricle. Our model provides a deeper understanding of cardiac mechanics and thus will have applications in cardiac research and clinical medicine.Comment: 14 pages, 8 figure

    DefGraspNets: Grasp Planning on 3D Fields with Graph Neural Nets

    Full text link
    Robotic grasping of 3D deformable objects is critical for real-world applications such as food handling and robotic surgery. Unlike rigid and articulated objects, 3D deformable objects have infinite degrees of freedom. Fully defining their state requires 3D deformation and stress fields, which are exceptionally difficult to analytically compute or experimentally measure. Thus, evaluating grasp candidates for grasp planning typically requires accurate, but slow 3D finite element method (FEM) simulation. Sampling-based grasp planning is often impractical, as it requires evaluation of a large number of grasp candidates. Gradient-based grasp planning can be more efficient, but requires a differentiable model to synthesize optimal grasps from initial candidates. Differentiable FEM simulators may fill this role, but are typically no faster than standard FEM. In this work, we propose learning a predictive graph neural network (GNN), DefGraspNets, to act as our differentiable model. We train DefGraspNets to predict 3D stress and deformation fields based on FEM-based grasp simulations. DefGraspNets not only runs up to 1500 times faster than the FEM simulator, but also enables fast gradient-based grasp optimization over 3D stress and deformation metrics. We design DefGraspNets to align with real-world grasp planning practices and demonstrate generalization across multiple test sets, including real-world experiments.Comment: To be published in the IEEE Conference on Robotics and Automation (ICRA), 202

    Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach

    Get PDF
    Vegetation responses to variation in climate are a current research priority in the context of accelerated shifts generated by climate change. However, the interactions between environmental and biological factors still represent one of the largest uncertainties in projections of future scenarios, since the relationship between drivers and ecosystem responses has a complex and nonlinear nature. We aimed to develop a model to study the vegetation’s primary productivity dynamic response to temporal variations in climatic conditions as measured by rainfall, temperature and radiation. Thus, we propose a new way to estimate the vegetation response to climate via a non-autonomous version of a classical growth curve, with a time-varying growth rate and carrying capacity parameters according to climate variables. With a Sequential Monte Carlo Estimation to account for complexities in the climate-vegetation relationship to minimize the number of parameters. The model was applied to six key sites identified in a previous study, consisting of different arid and semiarid rangelands from North Patagonia, Argentina. For each site, we selected the time series of MODIS NDVI, and climate data from ERA5 Copernicus hourly reanalysis from 2000 to 2021. After calculating the time series of the a posteriori distribution of parameters, we analyzed the explained capacity of the model in terms of the linear coefficient of determination and the parameters distribution variation. Results showed that most rangelands recorded changes in their sensitivity over time to climatic factors, but vegetation responses were heterogeneous and influenced by different drivers. Differences in this climate-vegetation relationship were recorded among different cases: (1) a marginal and decreasing sensitivity to temperature and radiation, respectively, but a high sensitivity to water availability; (2) high and increasing sensitivity to temperature and water availability, respectively; and (3) a case with an abrupt shift in vegetation dynamics driven by a progressively decreasing sensitivity to water availability, without any changes in the sensitivity either to temperature or radiation. Finally, we also found that the time scale, in which the ecosystem integrated the rainfall phenomenon in terms of the width of the window function used to convolve the rainfall series into a water availability variable, was also variable in time. This approach allows us to estimate the connection degree between ecosystem productivity and climatic variables. The capacity of the model to identify changes over time in the vegetation-climate relationship might inform decision-makers about ecological transitions and the differential impact of climatic drivers on ecosystems.Estación Experimental Agropecuaria BarilocheFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Perri, Daiana Vanesa. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentin

    Examples of works to practice staccato technique in clarinet instrument

    Get PDF
    Klarnetin staccato tekniğini güçlendirme aşamaları eser çalışmalarıyla uygulanmıştır. Staccato geçişlerini hızlandıracak ritim ve nüans çalışmalarına yer verilmiştir. Çalışmanın en önemli amacı sadece staccato çalışması değil parmak-dilin eş zamanlı uyumunun hassasiyeti üzerinde de durulmasıdır. Staccato çalışmalarını daha verimli hale getirmek için eser çalışmasının içinde etüt çalışmasına da yer verilmiştir. Çalışmaların üzerinde titizlikle durulması staccato çalışmasının ilham verici etkisi ile müzikal kimliğe yeni bir boyut kazandırmıştır. Sekiz özgün eser çalışmasının her aşaması anlatılmıştır. Her aşamanın bir sonraki performans ve tekniği güçlendirmesi esas alınmıştır. Bu çalışmada staccato tekniğinin hangi alanlarda kullanıldığı, nasıl sonuçlar elde edildiği bilgisine yer verilmiştir. Notaların parmak ve dil uyumu ile nasıl şekilleneceği ve nasıl bir çalışma disiplini içinde gerçekleşeceği planlanmıştır. Kamış-nota-diyafram-parmak-dil-nüans ve disiplin kavramlarının staccato tekniğinde ayrılmaz bir bütün olduğu saptanmıştır. Araştırmada literatür taraması yapılarak staccato ile ilgili çalışmalar taranmıştır. Tarama sonucunda klarnet tekniğin de kullanılan staccato eser çalışmasının az olduğu tespit edilmiştir. Metot taramasında da etüt çalışmasının daha çok olduğu saptanmıştır. Böylelikle klarnetin staccato tekniğini hızlandırma ve güçlendirme çalışmaları sunulmuştur. Staccato etüt çalışmaları yapılırken, araya eser çalışmasının girmesi beyni rahatlattığı ve istekliliği daha arttırdığı gözlemlenmiştir. Staccato çalışmasını yaparken doğru bir kamış seçimi üzerinde de durulmuştur. Staccato tekniğini doğru çalışmak için doğru bir kamışın dil hızını arttırdığı saptanmıştır. Doğru bir kamış seçimi kamıştan rahat ses çıkmasına bağlıdır. Kamış, dil atma gücünü vermiyorsa daha doğru bir kamış seçiminin yapılması gerekliliği vurgulanmıştır. Staccato çalışmalarında baştan sona bir eseri yorumlamak zor olabilir. Bu açıdan çalışma, verilen müzikal nüanslara uymanın, dil atış performansını rahatlattığını ortaya koymuştur. Gelecek nesillere edinilen bilgi ve birikimlerin aktarılması ve geliştirici olması teşvik edilmiştir. Çıkacak eserlerin nasıl çözüleceği, staccato tekniğinin nasıl üstesinden gelinebileceği anlatılmıştır. Staccato tekniğinin daha kısa sürede çözüme kavuşturulması amaç edinilmiştir. Parmakların yerlerini öğrettiğimiz kadar belleğimize de çalışmaların kaydedilmesi önemlidir. Gösterilen azmin ve sabrın sonucu olarak ortaya çıkan yapıt başarıyı daha da yukarı seviyelere çıkaracaktır
    corecore