586 research outputs found

    JTEC panel on display technologies in Japan

    Get PDF
    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work)

    Research and technology, 1987

    Get PDF
    Three broad goals were presented by NASA as a guide to meet the challenges of the future: to advance scientific knowledge of the planet Earth, the solar system, and the universe; to expand human presence beyond the Earth into the solar system; and to strengthen aeronautics research and technology. Near-term and new-generation space transportation and propulsion systems are being analyzed that will assure the nation access to and presence in space. Other key advanced studies include large astronomical observatories, space platforms, scientific and commercial payloads, and systems to enhance operations in Earth orbit. Longer-range studies include systems that would allow humans to explore the Moon and Mars during the next century. Research programs, both to support the many space missions studied or managed by the Center and to advance scientific knowledge in selected areas, involve work in the areas of atmospheric science, earth science, space science (including astrophysics and solar, magnetospheric, and atomic physics), and low-gravity science. Programs and experiment design for flights on the Space Station, free-flying satellites, and the Space Shuttle are being planned. To maintain a leadership position in technology, continued advances in liquid and solid propellant engines, materials and processes; electronic, structural, and thermal investigations; and environmental control are required. Progress during the fiscal year 1987 is discussed

    AFIT School of Engineering Contributions to Air Force Research and Technology Calendar Year 1973

    Get PDF
    This report contains abstracts of Master of Science Theses, Doctoral dissertations, and selected faculty publications completed during the 1973 calendar year at the School of Engineering, Air Force Institute of Technology, at Wright-Patterson Air Force Base, Ohio

    AFIT School of Engineering Contributions to Air Force Research and Technology Calendar Year 1973

    Get PDF
    This report contains abstracts of Master of Science Theses, Doctoral dissertations, and selected faculty publications completed during the 1973 calendar year at the School of Engineering, Air Force Institute of Technology, at Wright-Patterson Air Force Base, Ohio

    Numerical simulation and experimentation of pulsatile flows in axisymmetric arterial models

    Get PDF
    ABSTRACT NUMERICAL SIMULATION AND EXPERIMENTATION OF PULSATILE FLOWS IN AXISYMMETRIC ARTERIAL MODELS by TADESSE GEBREEGZIABHER December 2011 Co-advisors: 1. Dr. Emmanuel Ayorinde 2. Dr. Trilochan Singh Major: Mechanical Engineering Degree: Doctor of Philosophy The primary motivation for this dissertation is the fluid flow and structural response to unsteady blood flow in the human body. The research work is a synergistic merging of numerical simulation and experimentation. For the experiments, an all-encompassing, highly flexible experimental apparatus was designed and fabricated to facilitate a wide range of operating conditions, the range of which was chosen to accommodate mammalian cardiovascular system for both human and animal species. The parameters that were varied during the course of the experimentation include the frequency of the flow pulsation, tubular materials having various structural properties, and blockages of the tube cross sections to simulate the presence of plaque in arteries. The main outcome of the experimentation was a connection between the amplitude and frequency of the pulsations and the volumetric flow rate of the flowing fluid. Of equal importance is the extent of the response of the wall to the nature of the pulsating flow which was detected, located and characterized using a non-invasive acoustic emission equipment. The simulations that were performed represent a major advance over prior attempts to simulate pulsating flows in flexible- and rigid-walled tubes. That advance was embodied in the model that was used to characterize the flow. In most of prior studies, a particular flow regime was selected and used throughout the entire solution domain. This selection ignored the fact that flowing fluids passing through variable cross sections undergo changes of flow regime. In particular, a flow initiated in a relatively large upstream cross section may be laminar based on inlet conditions. However, as the fluid travels downstream and enters a constricted cross section, the laminar regime may undergo a transition and subsequently experience turbulence. The capability to accommodate all these flow regimes by a single model was first accomplished in this research. Of special relevance is that the capability to simulate the proper flow regime enabled a more realistic response of the bounding wall of the tube to the imposed pulsations. Comparisons were made between the experimental results and the predictions of the simulations for two purposes. One was to establish the ranges of applicability of the simulation model. The other established a body of archival-quality information based on confirming experimental and simulated results. Another unique contribution of this research is the determination of the presence of flow-induced acoustic emissions. The motivation for this part of this work is the development of a diagnostic tool to detect, locate, and characterize blockages in arterial models

    Advanced transport operating system software upgrade: Flight management/flight controls software description

    Get PDF
    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU)

    Kinome capture sequencing of high-grade serous ovarian carcinoma reveals novel mutations in the JAK3 gene.

    Get PDF
    High-grade serous ovarian carcinoma (HGSOC) remains the deadliest form of epithelial ovarian cancer and despite major efforts little improvement in overall survival has been achieved. Identification of recurring "driver" genetic lesions has the potential to enable design of novel therapies for cancer. Here, we report on a study to find such new therapeutic targets for HGSOC using exome-capture sequencing approach targeting all kinase genes in 127 patient samples. Consistent with previous reports, the most frequently mutated gene was TP53 (97% mutation frequency) followed by BRCA1 (10% mutation frequency). The average mutation frequency of the kinase genes mutated from our panel was 1.5%. Intriguingly, after BRCA1, JAK3 was the most frequently mutated gene (4% mutation frequency). We tested the transforming properties of JAK3 mutants using the Ba/F3 cell-based in vitro functional assay and identified a novel gain-of-function mutation in the kinase domain of JAK3 (p.T1022I). Importantly, p.T1022I JAK3 mutants displayed higher sensitivity to the JAK3-selective inhibitor Tofacitinib compared to controls. For independent validation, we re-sequenced the entire JAK3 coding sequence using tagged amplicon sequencing (TAm-Seq) in 463 HGSOCs resulting in an overall somatic mutation frequency of 1%. TAm-Seq screening of CDK12 in the same population revealed a 7% mutation frequency. Our data confirms that the frequency of mutations in kinase genes in HGSOC is low and provides accurate estimates for the frequency of JAK3 and CDK12 mutations in a large well characterized cohort. Although p.T1022I JAK3 mutations are rare, our functional validation shows that if detected they should be considered as potentially actionable for therapy. The observation of CDK12 mutations in 7% of HGSOC cases provides a strong rationale for routine somatic testing, although more functional and clinical characterization is required to understand which nonsynonymous mutations alterations are associated with homologous recombination deficiency
    • …
    corecore