730 research outputs found

    Advanced Metering Infrastructure Based on Smart Meters in Smart Grid

    Get PDF
    Due to lack of situational awareness, automated analysis, poor visibility, and mechanical switches, today\u27s electric power grid has been aging and ill‐suited to the demand for electricity, which has gradually increased, in the twenty‐first century. Besides, the global climate change and the greenhouse gas emissions on the Earth caused by the electricity industries, the growing population, one‐way communication, equipment failures, energy storage problems, the capacity limitations of electricity generation, decrease in fossil fuels, and resilience problems put more stress on the existing power grid. Consequently, the smart grid (SG) has emerged to address these challenges. To realize the SG, an advanced metering infrastructure (AMI) based on smart meters is the most important key

    Power systems automation, communication, and information technologies for smart grid: A technical aspects review

    Get PDF
    Smart grid (SG) introduced proven power system, based on modernized power delivery system with introduction of advanced data-information and communication technologies (ICT). SGs include improved quality of power transmission/distribution from power generation to end-users with optimized power flow and efficiency. In addition to above modern automation, two-way communications, advanced monitoring, and control to optimize power quality issues are the classic features of SGs. This ensures the efficiency and reliability of all its interconnected power system elements against potential threats and life time cycle. By integrating ICT into the power system SGs improved the working capabilities of the utility companies. Resultant of ICT with SG leads to better management of assets and ensure energy management for end users. This review article presents the different areas of communication and information technology areas involved in SG automation

    Vulnerability and resilience of cyber-physical power systems: results from an empirical-based study

    Full text link
    Power systems are undergoing a profound transformation towards cyber-physical systems. Disruptive changes due to energy system transition and the complexity of the interconnected systems expose the power system to new, unknown and unpredictable risks. To identify the critical points, a vulnerability assessment was conducted, involving experts from power as well as information and communication technologies (ICT) sectors. Weaknesses were identified e.g.,the lack of policy enforcement worsened by the unreadiness of involved actors. The complex dynamics of ICT makes it infeasible to keep a complete inventory of potential stressors to define appropriate preparation and prevention mechanisms. Therefore, we suggest applying a resilience management approach to increase the resilience of the system. It aims at a better ride through failures rather than building higher walls. We conclude that building resilience in cyber-physical power systems is feasible and helps in preparing for the unexpected

    Mobile health systems and emergence

    Get PDF
    Changes in the age distribution of the population and increased prevalence of chronic illnesses, together with a shortage of health professionals and other resources, will increasingly challenge the ability of national healthcare systems to meet rising demand for services. Large-scale use of eHealth and mHealth services enabled by advances in ICT are frequently cited as providing part of the solution to this crisis in future provision. As part of this picture, self-monitoring and remote monitoring of patients, for example by means of smartphone apps and body-worn sensors, is on the way to becoming mainstream. In future, each individual’s personal health system may be able to access a large number of devices, including sensors embedded in the environment as well as in-body smart medical implants, in order to provide (semi-)autonomous health-related services to the user. This article presents some examples of mHealth systems based on emerging technologies, including body area networks (BANs), wireless and mobile technologies, miniature body-worn sensors and distributed decision support. Applications are described in the areas of management of chronic illnesses and management of (large- scale) emergency situations. In the latter setting BANs form part of an advanced ICT system proposed for future major incident management; including BANs for monitoring casualties and emergency services personnel during first response. Some challenges and possibilities arising from current and future emerging mHealth technologies, and the question of how emergence theory might have a bearing on understanding these challenges, is discussed here

    Electric vehicle as a service (EVaaS):applications, challenges and enablers

    Get PDF
    Under the vehicle-to-grid (V2G) concept, electric vehicles (EVs) can be deployed as loads to absorb excess production or as distributed energy resources to supply part of their stored energy back to the grid. This paper overviews the technologies, technical components and system requirements needed for EV deployment. Electric vehicle as a service (EVaaS) exploits V2G technology to develop a system where suitable EVs within the distribution network are chosen individually or in aggregate to exchange energy with the grid, individual customers or both. The EVaaS framework is introduced, and interactions among EVaaS subsystems such as EV batteries, charging stations, loads and advanced metering infrastructure are studied. The communication infrastructure and processing facilities that enable data and information exchange between EVs and the grid are reviewed. Different strategies for EV charging/discharging and their impact on the distribution grid are reviewed. Several market designs that incentivize energy trading in V2G environments are discussed. The benefits of V2G are studied from the perspectives of ancillary services, supporting of renewables and the environment. The challenges to V2G are studied with respect to battery degradation, energy conversion losses and effects on distribution system

    Insights from the Inventory of Smart Grid Projects in Europe: 2012 Update

    Get PDF
    By the end of 2010 the Joint Research Centre, the European Commission’s in-house science service, launched the first comprehensive inventory of smart grid projects in Europe1. The final catalogue was published in July 2011 and included 219 smart grid and smart metering projects from the EU-28 member states, Switzerland and Norway. The participation of the project coordinators and the reception of the report by the smart grid community were extremely positive. Due to its success, the European Commission decided that the project inventory would be carried out on a regular basis so as to constantly update the picture of smart grid developments in Europe and keep track of lessons learnt and of challenges and opportunities. For this, a new on-line questionnaire was launched in March 2012 and information on projects collected up to September 2012. At the same time an extensive search of project information on the internet and through cooperation links with other European research organizations was conducted. The resulting final database is the most up to date and comprehensive inventory of smart grids and smart metering projects in Europe, including a total of 281 smart grid projects and 90 smart metering pilot projects and rollouts from the same 30 countries that were included in the 2011 inventory database. Projects surveyed were classified into three categories: R&D, demonstration or pre-deployment) and deployment, and for the first time a distinction between smart grid and smart metering projects was made. The following is an insight into the 2012 report.JRC.F.3-Energy securit

    Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review

    Full text link
    A modern-day society demands resilient, reliable, and smart urban infrastructure for effective and in telligent operations and deployment. However, unexpected, high-impact, and low-probability events such as earthquakes, tsunamis, tornadoes, and hurricanes make the design of such robust infrastructure more complex. As a result of such events, a power system infrastructure can be severely affected, leading to unprecedented events, such as blackouts. Nevertheless, the integration of smart grids into the existing framework of smart cities adds to their resilience. Therefore, designing a resilient and reliable power system network is an inevitable requirement of modern smart city infras tructure. With the deployment of the Internet of Things (IoT), smart cities infrastructures have taken a transformational turn towards introducing technologies that do not only provide ease and comfort to the citizens but are also feasible in terms of sustainability and dependability. This paper presents a holistic view of a resilient and sustainable smart city architecture that utilizes IoT, big data analytics, unmanned aerial vehicles, and smart grids through intelligent integration of renew able energy resources. In addition, the impact of disasters on the power system infrastructure is investigated and different types of optimization techniques that can be used to sustain the power flow in the network during disturbances are compared and analyzed. Furthermore, a comparative review analysis of different data-driven machine learning techniques for sustainable smart cities is performed along with the discussion on open research issues and challenges

    Home Energy Management System and Internet of Things: Current Trends and Way Forward

    Get PDF
    Managing energy in the residential areas has becoming essential with the aim of cost saving, to realize a practical approach of home energy management system (HEMS) in the area of heterogeneous Internet-of-Thing (IoT) devices. The devices are currently developed in different standards and protocols. Integration of these devices in the same HEMS is an issue, and many systems were proposed to integrate them efficiently. However, implementing new systems will incur high capital cost. This work aims to conduct a review on recent HEMS studies towards achieving the same objectives: energy efficiency, energy saving, reduce energy cost, reduce peak to average ratio, and maximizing user's comfort. Potential research directions and discussion on current issues and challenges in HEMS implementation are also provided

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    SMART GRIDS LABORATORIES INVENTORY 2015

    Get PDF
    A smart electricity grid opens the door to a myriad of new applications aimed at enhancing security of supply, sustainability and market competitiveness. Gathering detailed information about smart grid laboratories activities represents a primary need. In order to obtain a better picture of the ongoing Smart Grid developments, after the successful smart grid project survey initiated in 2011, we recently launched a focused on-line survey addressed to organisations owning or running Smart Grid laboratory facilities. The main objective is to publish aggregated information on a regular basis in order to provide an overview of the current facilities, to highlight trends in research and investments and to identify existing gaps.JRC.F.3-Energy Security, Systems and Marke
    • 

    corecore