8 research outputs found

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    Global and local feature-based transformations for fingerprint data protection

    Get PDF
    Due to its non-shareable characteristic, biometrics has been widely implemented for authenticating users. This characteristic asserts that biometrics meets the non-repudiation requirement which is one of the key factors in the authentication system. Among biometric modalities, fingerprints have the best capability for satisfying both technical and social aspects of an authentication system. Nevertheless, similar to other modalities, once the stored fingerprint template has been compromised, the effect will be forever since the fingerprint pattern is permanent. So, a mechanism which can protect this fingerprint pattern is desired. Common cryptographic approaches, however, do not work due to uncertainty in the captured fingerprint image caused by disturbing factors either in the scanner or in the finger itself. While authenticating fingerprints in a plain format is not secure, in a cipher format it is impractical because slightly different inputs result in completely different outputs. Therefore, a specific transformation mechanism is needed: one which is able to accept similar fingerprints and reject dissimilar fingerprints, while at the same time generating a relatively non-invertible fingerprint template. Most of the existing protection approaches, however, have high error rates which make them inappropriate to implement. The approaches proposed in this thesis are for addressing this problem, in particular. The proposed approaches comprise three modules: feature transformation, feature representation and feature comparison. The evaluation is to measure the accuracy, the capability for revoking the template and generating another template, and the capability for scrambling the fingerprint pattern. The first approach, which is a global feature-based transformation, is developed by exploring both the fingerprint singular point and minutiae points. The experimental results show that this approach is able to improve the existing performance, despite possible limitations (e.g., relying on the core point). In order to eliminate possible drawbacks of that global feature-based transformation, a local-based transformation is implemented by extracting only minutiae points. This has been able to eliminate the core-point dependency and at the same time produce only a slightly higher error rate than the previous proposed approach. To make further improvements, the third approach is designed in both Cartesian and polar coordinate spaces. This approach has been able to take advantages of being core point independent and at the same time generates higher performance than most of the existing approaches

    Proceeding icoset 2017

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Machinic Eyes: New and Post-Digital Aesthetics, Surveillance, and Resistance

    Get PDF
    This work concerns the rise of the New Aesthetic, an art project developed by James Bridle in 2012. The New Aesthetic, as envisioned by Bridle, was chiefly concerned with the overlapping of physical and digital realities through both the artifacts produced by this overlapping and the systems involved therein. I introduce the advent of the New Aesthetic and present the major criticisms: the lack of a robust theoretical and scholarly framework, the lack of a historical framework, the privileging of artifacts over systems as new Aesthetic, and the fragmented scholarly outlook on the New Aesthetic. Upon further examination, I discovered that the New Aesthetic is less of an art project but a metaphor for a global surveillance apparatus that is the result of clandestine partnerships between multinational technology corporations and intelligence agencies associated the Five Eyes consortium. In this dissertation, I critique the New Aesthetic from a scholarly viewpoint, offer a historical precedent of how the New Aesthetic came to be from cultural and technological perspectives, examine the rise of the global surveillance apparatus within the New Aesthetic, and offer ideas of how to resist surveillance as a result of our reliance upon computational technologies
    corecore