23,160 research outputs found

    A Sub-optimal Algorithm to Synthesize Control Laws for a Network of Dynamic Agents

    Get PDF
    We study the synthesis problem of an LQR controller when the matrix describing the control law is constrained to lie in a particular vector space. Our motivation is the use of such control laws to stabilize networks of autonomous agents in a decentralized fashion; with the information flow being dictated by the constraints of a pre-specified topology. In this paper, we consider the finite-horizon version of the problem and provide both a computationally intensive optimal solution and a sub-optimal solution that is computationally more tractable. Then we apply the technique to the decentralized vehicle formation control problem and show that the loss in performance due to the use of the sub-optimal solution is not huge; however the topology can have a large effect on performance

    Low computational complexity model reduction of power systems with preservation of physical characteristics

    Get PDF
    A data-driven algorithm recently proposed to solve the problem of model reduction by moment matching is extended to multi-input, multi-output systems. The algorithm is exploited for the model reduction of large-scale interconnected power systems and it offers, simultaneously, a low computational complexity approximation of the moments and the possibility to easily enforce constraints on the reduced order model. This advantage is used to preserve selected slow and poorly damped modes. The preservation of these modes has been shown to be important from a physical point of view and in obtaining an overall good approximation. The problem of the choice of the socalled tangential directions is also analyzed. The algorithm and the resulting reduced order model are validated with the study of the dynamic response of the NETS-NYPS benchmark system (68-Bus, 16-Machine, 5-Area) to multiple fault scenarios

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences
    corecore