1,187,392 research outputs found

    Input noise approximation in tracker modeling

    Get PDF
    The validity of approximating random Gaussian distributed inputs used in human response modeling by sums of discrete sine waves is studied. An ideal rectangular power density spectrum is simulated using both filtered Gaussian white noise and sums-of-discrete sine waves with three different input cutoff frequencies in the same compensatory tracking task. Resulting normalized tracking error and quality operator observations are used to investigate apparent discrepancies in human operator characteristics. Results show that discrete and continuous input tracking data compare favorable when the power in the crossover region is taken into account

    Agent-Based Demand-Modeling Framework for Large-Scale Microsimulations

    Get PDF
    Microsimulation is becoming increasingly important in traffic demand modeling. The major advantage over traditional four-step models is the ability to simulate each traveler individually. Decision-making processes can be included for each individual. Traffic demand is the result of the different decisions made by individuals; these decisions lead to plans that the individuals then try to optimize. Therefore, such microsimulation models need appropriate initial demand patterns for all given individuals. The challenge is to create individual demand patterns out of general input data. In practice, there is a large variety of input data, which can differ in quality, spatial resolution, purpose, and other characteristics. The challenge for a flexible demand-modeling framework is to combine the various data types to produce individual demand patterns. In addition, the modeling framework has to define precise interfaces to provide portability to other models, programs, and frameworks, and it should be suitable for large-scale applications that use many millions of individuals. Because the model has to be adaptable to the given input data, the framework needs to be easily extensible with new algorithms and models. The presented demand-modeling framework for large-scale scenarios fulfils all these requirements. By modeling the demand for two different scenarios (Zurich, Switzerland, and the German states of Berlin and Brandenburg), the framework shows its flexibility in aspects of diverse input data, interfaces to third-party products, spatial resolution, and last but not least, the modeling process itself

    Input-Output Modeling

    Get PDF
    Input-output modeling activities have been sponsored by IIASA for many years. These activities provided a link between various research centers as well as associated research groups engaged in constructing similar systems, and also individual researchers interested in the application of input-output type models. The aim of the sixth IIASA meeting was to demonstrate to a wide community of researchers, policy makers and their advisers the likely uses of integrated input-output models in economic policy both at industrial and national levels. This message is well illustrated. The papers provide the users with illuminating simulation studies showing on the one hand the impact of technological structural changes in the macroaggregates and on the other hand how the changes in macrovariables influence the pattern of changes in particular industries. This volume presents the results of the meeting organized by IIASA and IES in Warsaw

    Global sensitivity analysis of computer models with functional inputs

    Get PDF
    Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the response variability of a numerical model. The common quantitative methods are applicable to computer codes with scalar input variables. This paper aims to illustrate different variance-based sensitivity analysis techniques, based on the so-called Sobol indices, when some input variables are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary meta-modeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or Generalized Additive Models (GAM). The ``mean'' model allows to estimate the sensitivity indices of each scalar input variables, while the ``dispersion'' model allows to derive the total sensitivity index of the functional input variables. The proposed approach is compared to some classical SA methodologies on an analytical function. Lastly, the proposed methodology is applied to a concrete industrial computer code that simulates the nuclear fuel irradiation

    INPUT-OUTPUT MODELING AND RESOURCE USE PROJECTION

    Get PDF
    Resource /Energy Economics and Policy,

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction
    corecore