16,307 research outputs found

    Stepping motor control circuit Patent

    Get PDF
    Stepping motor control apparatus exciting windings in proper time sequence to cause motor to rotate in either directio

    An Offset Cancelation Technique for Latch Type Sense Amplifiers

    Get PDF
    An offset compensation technique for a latch type sense amplifier is proposed in this paper. The proposed scheme is based on the recalibration of the charging/discharging current of the critical nodes which are affected by the device mismatches. The circuit has been designed in a 65 nm CMOS technology with 1.2 V core transistors. The auto-calibration procedure is fully digital. Simulation results are given verifying the operation for sampling a 5 Gb/s signal dissipating only 360 uW

    Low noise tunnel diode receivers for satellite application

    Get PDF
    Low noise tunnel diode receivers for satellite application

    Fault isolation detection expert (FIDEX). Part 1: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    Get PDF
    LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system

    What constitutes a nanoswitch? A Perspective

    Full text link
    Progress in the last two decades has effectively integrated spintronics and nanomagnetics into a single field, creating a new class of spin-based devices that are now being used both to Read (R) information from magnets and to Write (W) information onto magnets. Many other new phenomena are being investigated for nano-electronic memory as described in Part II of this book. It seems natural to ask whether these advances in memory devices could also translate into a new class of logic devices. What makes logic devices different from memory is the need for one device to drive another and this calls for gain, directionality and input-output isolation as exemplified by the transistor. With this in mind we will try to present our perspective on how W and R devices in general, spintronic or otherwise, could be integrated into transistor-like switches that can be interconnected to build complex circuits without external amplifiers or clocks. We will argue that the most common switch used to implement digital logic based on complementary metal oxide semiconductor (CMOS) transistors can be viewed as an integrated W-R unit having an input-output asymmetry that give it gain and directionality. Such a viewpoint is not intended to provide any insight into the operation of CMOS switches, but rather as an aid to understanding how W and R units based on spins and magnets can be combined to build transistor-like switches. Next we will discuss the standard W and R units used for magnetic memory devices and present one way to integrate them into a single unit with the input electrically isolated from the output. But we argue that this integrated W-R unit would not provide the key property of gain. We will then show that the recently discovered giant spin Hall effect could be used to construct a W-R unit with gain and suggest other possibilities for spin switches with gain.Comment: 27 pages. To appear in Emerging Nanoelectronic Devices, Editors: An Chen, James Hutchby, Victor Zhirnov and George Bourianoff, John Wiley & Sons (to be published

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    The reconfigurable Josephson circulator/directional amplifier

    Full text link
    Circulators and directional amplifiers are crucial non-reciprocal signal routing and processing components involved in microwave readout chains for a variety of applications. They are particularly important in the field of superconducting quantum information, where the devices also need to have minimal photon losses to preserve the quantum coherence of signals. Conventional commercial implementations of each device suffer from losses and are built from very different physical principles, which has led to separate strategies for the construction of their quantum-limited versions. However, as recently proposed theoretically, by establishing simultaneous pairwise conversion and/or gain processes between three modes of a Josephson-junction based superconducting microwave circuit, it is possible to endow the circuit with the functions of either a phase-preserving directional amplifier or a circulator. Here, we experimentally demonstrate these two modes of operation of the same circuit. Furthermore, in the directional amplifier mode, we show that the noise performance is comparable to standard non-directional superconducting amplifiers, while in the circulator mode, we show that the sense of circulation is fully reversible. Our device is far simpler in both modes of operation than previous proposals and implementations, requiring only three microwave pumps. It offers the advantage of flexibility, as it can dynamically switch between modes of operation as its pump conditions are changed. Moreover, by demonstrating that a single three-wave process yields non-reciprocal devices with reconfigurable functions, our work breaks the ground for the development of future, more-complex directional circuits, and has excellent prospects for on-chip integration
    corecore