7,513 research outputs found

    Comparison of input devices in an ISEE direct timbre manipulation task

    Get PDF
    The representation and manipulation of sound within multimedia systems is an important and currently under-researched area. The paper gives an overview of the authors' work on the direct manipulation of audio information, and describes a solution based upon the navigation of four-dimensional scaled timbre spaces. Three hardware input devices were experimentally evaluated for use in a timbre space navigation task: the Apple Standard Mouse, Gravis Advanced Mousestick II joystick (absolute and relative) and the Nintendo Power Glove. Results show that the usability of these devices significantly affected the efficacy of the system, and that conventional low-cost, low-dimensional devices provided better performance than the low-cost, multidimensional dataglove

    Computers in Support of Musical Expression

    Get PDF

    Multiparametric interfaces for fine-grained control of digital music

    Get PDF
    Digital technology provides a very powerful medium for musical creativity, and the way in which we interface and interact with computers has a huge bearing on our ability to realise our artistic aims. The standard input devices available for the control of digital music tools tend to afford a low quality of embodied control; they fail to realise our innate expressiveness and dexterity of motion. This thesis looks at ways of capturing more detailed and subtle motion for the control of computer music tools; it examines how this motion can be used to control music software, and evaluates musicians’ experience of using these systems. Two new musical controllers were created, based on a multiparametric paradigm where multiple, continuous, concurrent motion data streams are mapped to the control of musical parameters. The first controller, Phalanger, is a markerless video tracking system that enables the use of hand and finger motion for musical control. EchoFoam, the second system, is a malleable controller, operated through the manipulation of conductive foam. Both systems use machine learning techniques at the core of their functionality. These controllers are front ends to RECZ, a high-level mapping tool for multiparametric data streams. The development of these systems and the evaluation of musicians’ experience of their use constructs a detailed picture of multiparametric musical control. This work contributes to the developing intersection between the fields of computer music and human-computer interaction. The principal contributions are the two new musical controllers, and a set of guidelines for the design and use of multiparametric interfaces for the control of digital music. This work also acts as a case study of the application of HCI user experience evaluation methodology to musical interfaces. The results highlight important themes concerning multiparametric musical control. These include the use of metaphor and imagery, choreography and language creation, individual differences and uncontrol. They highlight how this style of interface can fit into the creative process, and advocate a pluralistic approach to the control of digital music tools where different input devices fit different creative scenarios

    Interaction Design for Digital Musical Instruments

    Get PDF
    The thesis aims to elucidate the process of designing interactive systems for musical performance that combine software and hardware in an intuitive and elegant fashion. The original contribution to knowledge consists of: (1) a critical assessment of recent trends in digital musical instrument design, (2) a descriptive model of interaction design for the digital musician and (3) a highly customisable multi-touch performance system that was designed in accordance with the model. Digital musical instruments are composed of a separate control interface and a sound generation system that exchange information. When designing the way in which a digital musical instrument responds to the actions of a performer, we are creating a layer of interactive behaviour that is abstracted from the physical controls. Often, the structure of this layer depends heavily upon: 1. The accepted design conventions of the hardware in use 2. Established musical systems, acoustic or digital 3. The physical configuration of the hardware devices and the grouping of controls that such configuration suggests This thesis proposes an alternate way to approach the design of digital musical instrument behaviour – examining the implicit characteristics of its composite devices. When we separate the conversational ability of a particular sensor type from its hardware body, we can look in a new way at the actual communication tools at the heart of the device. We can subsequently combine these separate pieces using a series of generic interaction strategies in order to create rich interactive experiences that are not immediately obvious or directly inspired by the physical properties of the hardware. This research ultimately aims to enhance and clarify the existing toolkit of interaction design for the digital musician

    Patterns of Musical Interaction with Computing Devices

    Get PDF
    In line with the efforts from the Ubiquitous Music Group, our research identified recurring patterns of interaction between humans and computing devices in existing music software and hardware. These four kinds of repeatedly implemented musical interactions are being documented in the form of interaction design patterns, providing an alternative taxonomy of interaction types, suitable for musical and computational developments in ubiquitous music research. In this paper we briefly describe the meaning of patterns in design fields. We also defend the use of interaction patterns in the design of ubiquitous music systems, and present the four proto-patterns proposed in our research. We intend with this paper to foster discussions at this 3rd Ubimus workshop, which can lead to refinement and improvement of the proposed interaction design patterns
    corecore