168 research outputs found

    Automatic tailoring and cloth modelling for animation characters.

    Get PDF
    The construction of realistic characters has become increasingly important to the production of blockbuster films, TV series and computer games. The outfit of character plays an important role in the application of virtual characters. It is one of the key elements reflects the personality of character. Virtual clothing refers to the process that constructs outfits for virtual characters, and currently, it is widely used in mainly two areas, fashion industry and computer animation. In fashion industry, virtual clothing technology is an effective tool which creates, edits and pre-visualises cloth design patterns efficiently. However, using this method requires lots of tailoring expertises. In computer animation, geometric modelling methods are widely used for cloth modelling due to their simplicity and intuitiveness. However, because of the shortage of tailoring knowledge among animation artists, current existing cloth design patterns can not be used directly by animation artists, and the appearance of cloth depends heavily on the skill of artists. Moreover, geometric modelling methods requires lots of manual operations. This tediousness is worsen by modelling same style cloth for different characters with different body shapes and proportions. This thesis addresses this problem and presents a new virtual clothing method which includes automatic character measuring, automatic cloth pattern adjustment, and cloth patterns assembling. There are two main contributions in this research. Firstly, a geodesic curvature flow based geodesic computation scheme is presented for acquiring length measurements from character. Due to the fast growing demand on usage of high resolution character model in animation production, the increasing number of characters need to be handled simultaneously as well as improving the reusability of 3D model in film production, the efficiency of modelling cloth for multiple high resolution character is very important. In order to improve the efficiency of measuring character for cloth fitting, a fast geodesic algorithm that has linear time complexity with a small bounded error is also presented. Secondly, a cloth pattern adjusting genetic algorithm is developed for automatic cloth fitting and retargeting. For the reason that that body shapes and proportions vary largely in character design, fitting and transferring cloth to a different character is a challenging task. This thesis considers the cloth fitting process as an optimization procedure. It optimizes both the shape and size of each cloth pattern automatically, the integrity, design and size of each cloth pattern are evaluated in order to create 3D cloth for any character with different body shapes and proportions while preserve the original cloth design. By automating the cloth modelling process, it empowers the creativity of animation artists and improves their productivity by allowing them to use a large amount of existing cloth design patterns in fashion industry to create various clothes and to transfer same design cloth to characters with different body shapes and proportions with ease

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Enabling On-body Computing Using a Track-Based Wearable

    Get PDF
    We are seeing an increasing trend in the number of computing devices attached to the body which provide a myriad of data along with additional interaction mechanisms and haptic feedback from these locations. Although this provides more computing locations, the devices are still resigned to stay in those particular locations. We believe that relocatable wearables can reduce the number of devices that the user has to keep track of, while also providing dynamic data by moving around the body. Some attempts have been made to build relocatable wearables, but these attempts are either too bulky or make the use of unreliable and slow locomotion mechanisms. In this thesis, we present Calico, a miniature wearable robot system with fast and precise locomotion for on-body sensing, actuation, and interaction. Calico consists of a two-wheel robot and an on-cloth track system or "railway," on which the robot travels. The robot packs an IMU, a battery and an onboard microcontroller that supports wireless BLE communication. The track system has multiple branches that extend to key areas of the human body, allowing the robot to reach the front and back of the torso, shoulders and arms, and even lower body areas such as legs. The track system also includes rotational switches, or "railway turntables," enabling complex routing options when diverging tracks are presented. We introduce the system design of Calico and report a series of technical evaluations for system performance. To illustrate potential use cases, we present a suite of applications, including remote medical usage for chest auscultation, body posture tracking for training and exercise, a wearable walkie-talkie, and a robot companion living on-body

    Sustainable Solutions for Wearable Technologies:Mapping the Product Development Life Cycle

    Get PDF
    Wearable technologies involve the integration of technology into clothing or accessories to bring new functionalities for people on the move. Many examples of wearables are emerging, from simple fitness tracking watches to electronics deeply embedded into garments for multi-touch sensing and control for personal music players. Without careful development, wearables can have a negative impact on the environment due to increased production of electronic components, increased e-waste from abandoned devices, and increased energy usage. We examine environmental sustainability issues through a review of recent research and cases across three broad areas including the fashion industry, information and communications technology (ICT), and wearable technologies. In the analysis, we examine stages in the product life cycle and identify the unique issues for each sector, including the extraction of materials, production process, distribution of products, use, and disposal of products that have reached the end of their life. The findings are gathered as implications for design so that researchers, educators, designers, developers, and product managers will gain an overview of the issues related to environmental sustainability. Related examples of products and prototypes are provided to enable informed choices during the design and development of wearables that are more environmentally sustainable

    Measuring joint movement through garment-integrated wearable sensing

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2015. Major: Computer Science. Advisor: Lucy Dunne. 1 computer file (PDF); xv, 154 pages.Wearable technology is generally interpreted as electronic devices with passive and/or active electronic components worn on the human body. A further sub-set of wearable technology includes devices that are equipped with sensing abilities for body movements or biosignals and computational power that allows for further analysis. Wearable devices can be distinguished by different levels of wearability: wearable devices integrated into clothing, which are an integral part of the clothes; and wearable devices put on as an accessory. This thesis introduces a novel approach to truly wearable sensing of body movement through novel garment-integrated sensors. It starts from an initial investigation of garment movement in order to quantify the effect that garment movement has on sensor accuracy in garment-integrated sensors; continues with the development and detailed characterization of garment-integrated sensors that use a stitched technique to create comfortable, soft sensors capable of sensing stretch and bend; and ends with a final evaluation of the proposed wearable solution for the specific case of knee joint monitoring in both the stretch and bend modalities

    Graphene textile smart clothing for wearable cardiac monitoring

    Get PDF
    Wearable electronics is a rapidly growing field that recently started to introduce successful commercial products into the consumer electronics market. Employment of biopotential signals in wearable systems as either biofeedbacks or control commands are expected to revolutionize many technologies including point of care health monitoring systems, rehabilitation devices, human–computer/machine interfaces (HCI/HMIs), and brain–computer interfaces (BCIs). Since electrodes are regarded as a decisive part of such products, they have been studied for almost a decade now, resulting in the emergence of textile electrodes. This study reports on the synthesis and application of graphene nanotextiles for the development of wearable electrocardiography (ECG) sensors for personalized health monitoring applications. In this study, we show for the first time that the electrocardiogram was successfully obtained with graphene textiles placed on a single arm. The use of only one elastic armband, and an “all-textile-approach” facilitates seamless heart monitoring with maximum comfort to the wearer. The functionality of graphene textiles produced using dip coating and stencil printing techniques has been demonstrated by the non-invasive measurement of ECG signals, up to 98% excellent correlation with conventional pre-gelled, wet, silver/silver-chloride (Ag / AgCl) electrodes. Heart rate have been successfully determined with ECG signals obtained in different situations. The system-level integration and holistic design approach presented here will be effective for developing the latest technology in wearable heart monitoring devices

    'The emotional wardrobe': a fashion perspective on the integration of technology and clothing

    Full text link
    Since the Industrial Revolution, fashion and technology have been linked through the textile and manufacturing industries, a relationship that has propelled technical innovation and aesthetic and social change. Today a new alliance is emerging through the integration of electronic technology and smart materials on the body. However, it is not fashion designers who are exploiting this emerging area but interaction design, performance art and electronic and computing technologists. 'The Emotional Wardrobe' is a practice-based research project that seeks to address this imbalance by integrating technology with clothing from a fashion perspective. It aims to enhance fashion's expressive and responsive potential by investigating clothing that can both represent and stimulate an emotional response through the interface of technology. Precedents can be found in the work of other practitioners who merge clothing design with responsive material technology to explore social interaction, social commentary and body responsive technology. Influence is also sought from designers who investigate the notion of paradoxical emotions. A survey of emotion science, emotional design, and affective computing is mapped onto a fashion design structure to assess if this fusion can create new 'poetic' paradigms for the interaction of fashion and technology. These models are explored through the production of 'worn' and 'unworn' case studies which are visualised through responsive garment prototypes and multimedia representations. The marriage of fashion and technology is tested through a series of material experiments that aim to create a new aesthetic vocabulary that is responsive and emotional. They integrate traditional fashion fabrics with material technology to enhance the definition of fashion. The study shows that the merger of fashion and technology can offer a more personal and provocative definition of self, one which actively involves the wearer in a mutable aesthetic identity, replacing the fixed physicality of fashion with a constant flux of self-expression and playful psychological experience. The contribution of the research consists of: the integration of technology to alter communication in fashion, a recontextualisation of fashion within a wider arena of emotion and technology, the use of technologies from other disciplines to materialize ideas and broaden the application of those technologies, and the articulation of a fashion design methodology
    • …
    corecore