1,602 research outputs found

    Superposition with First-class {B}ooleans and Inprocessing Clausification

    Get PDF
    International audienceWe present a complete superposition calculus for first-order logic with an interpreted Boolean type. Our motivation is to lay the foundation for refutationally complete calculi in more expressive logics with Booleans, such as higher-order logic, and to make superposition work efficiently on problems that would be obfuscated when using clausification as preprocessing. Working directly on formulas, our calculus avoids the costly axiomatic encoding of the theory of Booleans into first-order logic and offers various ways to interleave clausification with other derivation steps. We evaluate our calculus using the Zipperposition theorem prover, and observe that, with no tuning of parameters, our approach is on a par with the state-of-the-art approach

    Effectiveness of pre- and inprocessing for CDCL-based SAT solving

    Get PDF
    Applying pre- and inprocessing techniques to simplify CNF formulas both before and during search can considerably improve the performance of modern SAT solvers. These algorithms mostly aim at reducing the number of clauses, literals, and variables in the formula. However, to be worthwhile, it is necessary that their additional runtime does not exceed the runtime saved during the subsequent SAT solver execution. In this paper we investigate the efficiency and the practicability of selected simplification algorithms for CDCL-based SAT solving. We first analyze them by means of their expected impact on the CNF formula and SAT solving at all. While testing them on real-world and combinatorial SAT instances, we show which techniques and combinations of them yield a desirable speedup and which ones should be avoided

    Unifying Reasoning and Core-Guided Search for Maximum Satisfiability

    Get PDF
    A central algorithmic paradigm in maximum satisfiability solving geared towards real-world optimization problems is the core-guided approach. Furthermore, recent progress on preprocessing techniques is bringing in additional reasoning techniques to MaxSAT solving. Towards realizing their combined potential, understanding formal underpinnings of interleavings of preprocessing-style reasoning and core-guided algorithms is important. It turns out that earlier proposed notions for establishing correctness of core-guided algorithms and preprocessing, respectively, are not enough for capturing correctness of interleavings of the techniques. We provide an in-depth analysis of these and related MaxSAT instance transformations, and propose correction set reducibility as a notion that captures inprocessing MaxSAT solving within a state-transition style abstract MaxSAT solving framework. Furthermore, we establish a general theorem of correctness for applications of SAT-based preprocessing techniques in MaxSAT. The results pave way for generic techniques for arguing about the formal correctness of MaxSAT algorithms.Peer reviewe

    GPU Enabled Automated Reasoning

    Get PDF

    Even Shorter Proofs Without New Variables

    Get PDF
    corecore