533 research outputs found

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大

    Softness Haptic Display Device for Human- Computer Interaction

    Get PDF

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Design of a Variable Stiffness Passive Layer Jamming Structure for Anthropomorphic Robotic Finger Applications

    Get PDF
    Soft robots can effectively mimic human hand interface characteristics and facilitate collaborative operations with humans in a safe manner. This dissertation research concerns the design and fabrication of a low cost variable stiffness structure for applications in compliant robotic fingers. A conceptual design of a compact multi-layer structure is proposed for realizing variable stiffness, when applied to underactuated fingers of an anthropomorphic robotic hand. The proposed design comprises thin material layers with clearance that permits a progressive hardening feature while grasping and added design flexibility and tuning of the fingers’ compliance. The design permits stiffness variations in a passive manner in the soft contact regions. The design is realized to ensure ease of scalability and cost-effective fabrication by the ’Additive Manufacturing (AM)’/3D-printing technology. Both the multi-layer structures and the fingers could be fabricated as a single entity, and from a single base material with relatively low elastic modulus. The proposed design also exhibits finite degrees-of-freedom representative of the human finger - The feasibility of the design and its manufacturability are verified through prototype fabrication using a readily available 3D-printing material, namely; 'Thermoplastic PolyUrethane (TPU)' with Young’s Modulus of 25MPa. The chosen material permitted low stiffness of the multi-layer structure in the contact interface under relatively small deformations, while ensuring sufficient rigidity on the non-contact regions of the finger. A finite element (FE) model is formulated considering 3D tetrahedral elements and a nodal-normal contact detection method together with the augmented Lagrange formulation. The model is analyzed to determine the force-displacement characteristics of the structure subject to linearly increasing compressive load, under the assumption of low interface friction. A simplified analytical model of the multi-layer structure is also formulated considering essential boundary and support conditions for each individual layer. The model revealed progressive hardening characteristics of the multilayer structure during compression due to sequential jamming of individual layers. The force-displacement characteristics of the design could thus be varied by varying the multi-layer structure parameters, such as number of layers, thickness of individual layers, material properties, and clearance between the successive layers. It is shown that the simplified analytical model could provide reasonably good estimate of the force-deflection properties of the structure in a computationally efficient manner. The analytical model is subsequently used to investigate the influences of variations in the multilayer structure parameters in a computationally efficient manner. It is shown that the proposed design offers superior tuning flexibility to realize desired force-displacement characteristics of the structure for developing scalable anthropomorphic robotic fingers of a compliant robotic hand, in addition to the cost-effective manufacturability

    An earthworm-like modular soft robot for locomotion in multi-terrain environments

    Get PDF
    Robotic locomotion in subterranean environments is still unsolved, and it requires innovative designs and strategies to overcome the challenges of burrowing and moving in unstructured conditions with high pressure and friction at depths of a few centimeters. Inspired by antagonistic muscle contractions and constant volume coelomic chambers observed in earthworms, we designed and developed a modular soft robot based on a peristaltic soft actuator (PSA). The PSA demonstrates two active configurations from a neutral state by switching the input source between positive and negative pressure. PSA generates a longitudinal force for axial penetration and a radial force for anchorage, through bidirectional deformation of the central bellows-like structure, which demonstrates its versatility and ease of control. The performance of PSA depends on the amount and type of fluid confined in an elastomer chamber, generating different forces and displacements. The assembled robot with five PSA modules enabled to perform peristaltic locomotion in different media. The role of friction was also investigated during experimental locomotion tests by attaching passive scales like earthworm setae to the ventral side of the robot. This study proposes a new method for developing a peristaltic earthworm-like soft robot and provides a better understanding of locomotion in different environments
    corecore