13,707 research outputs found

    Pricing, Investment, and Network Equilibrium

    Get PDF
    Despite rapidly emerging innovative road pricing and investment principles, the development of a long run network dynamics model for necessary policy evaluation is still lagging. This research endeavors to fill this gap and models the impacts of road financing policies throughout the network equilibration process. The manner in which pricing and investment jointly shape network equilibrium is particularly important and explored in this study. The interactions among travel demand, road supply, revenue mechanisms and investment rules are modeled at the link level in a network growth simulator. After assessing several measures of effectiveness, the proposed network growth model is able to evaluate the short- and long-run impacts of a broad spectrum of road pricing and investment policies on large-scale road networks, which can provide valuable information to decision-makers such as the implications of various policy scenarios on social welfare, financial situation of road authorities and potential implementation problems. Some issues hard to address in theoretical analysis can be examined in the agent-based simulation model. As a demonstration, we apply the network growth model to assess marginal and average pricing scenarios on a sample network. Even this relatively simple application provides new insights into issues around road pricing that have not previously been seriously considered. For instance, the results disclose a potential problem of over-investment when the marginal cost pricing scheme is adopted in conjunction with a myopic profit-neutral investment policy.Transportation network equilibrium; Road growth; Pricing; Congestion toll; Investment; Transport policy analysis.

    A Real-time Nonlinear Model Predictive Controller for Yaw Motion Optimization of Distributed Drive Electric Vehicles

    Get PDF
    This paper proposes a real-time nonlinear model predictive control (NMPC) strategy for direct yaw moment control (DYC) of distributed drive electric vehicles (DDEVs). The NMPC strategy is based on a control-oriented model built by integrating a single track vehicle model with the Magic Formula (MF) tire model. To mitigate the NMPC computational cost, the continuation/generalized minimal residual (C/GMRES) algorithm is employed and modified for real-time optimization. Since the traditional C/GMRES algorithm cannot directly solve the inequality constraint problem, the external penalty method is introduced to transform inequality constraints into an equivalently unconstrained optimization problem. Based on the Pontryagin’s minimum principle (PMP), the existence and uniqueness for solution of the proposed C/GMRES algorithm are proven. Additionally, to achieve fast initialization in C/GMRES algorithm, the varying predictive duration is adopted so that the analytic expressions of optimally initial solutions in C/GMRES algorithm can be derived and gained. A Karush-Kuhn-Tucker (KKT) condition based control allocation method distributes the desired traction and yaw moment among four independent motors. Numerical simulations are carried out by combining CarSim and Matlab/Simulink to evaluate the effectiveness of the proposed strategy. Results demonstrate that the real-time NMPC strategy can achieve superior vehicle stability performance, guarantee the given safety constraints, and significantly reduce the computational efforts

    Structural sensitivity analysis: Methods, applications, and needs

    Get PDF
    Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs

    Implicit Cooperative Positioning in Vehicular Networks

    Get PDF
    Absolute positioning of vehicles is based on Global Navigation Satellite Systems (GNSS) combined with on-board sensors and high-resolution maps. In Cooperative Intelligent Transportation Systems (C-ITS), the positioning performance can be augmented by means of vehicular networks that enable vehicles to share location-related information. This paper presents an Implicit Cooperative Positioning (ICP) algorithm that exploits the Vehicle-to-Vehicle (V2V) connectivity in an innovative manner, avoiding the use of explicit V2V measurements such as ranging. In the ICP approach, vehicles jointly localize non-cooperative physical features (such as people, traffic lights or inactive cars) in the surrounding areas, and use them as common noisy reference points to refine their location estimates. Information on sensed features are fused through V2V links by a consensus procedure, nested within a message passing algorithm, to enhance the vehicle localization accuracy. As positioning does not rely on explicit ranging information between vehicles, the proposed ICP method is amenable to implementation with off-the-shelf vehicular communication hardware. The localization algorithm is validated in different traffic scenarios, including a crossroad area with heterogeneous conditions in terms of feature density and V2V connectivity, as well as a real urban area by using Simulation of Urban MObility (SUMO) for traffic data generation. Performance results show that the proposed ICP method can significantly improve the vehicle location accuracy compared to the stand-alone GNSS, especially in harsh environments, such as in urban canyons, where the GNSS signal is highly degraded or denied.Comment: 15 pages, 10 figures, in review, 201

    Binary Search Algorithm for Mixed Integer Optimization: Application to energy management in a microgrid

    Get PDF
    This paper presents a binary search algorithm to deal with binary variables in mixed integer optimization problems. One example of this kind of problem is the optimal operation of hydrogen storage and energy sale and purchase into a microgrids context. In this work was studied a system composed by a microgrid that has a connection with the external electrical network and a charging station for electric cars. The system modeling was carried out by the Energy Hubs methodology. The proposed algorithm transforms the MIQP (Mixed Integer Quadratic Program) problem into a QP (Quadratic Program) that is easier to solve. In this way the overall control task is carried out the electricity purchase and sale to the power grid, maximizes the use of renewable energy sources, manages the use of energy storages and supplies the charge of the parked vehicles.Ministerio de EconomĂ­a y Competitividad DPI2013-46912-C2-1-RUniversidad de Sevilla CNPq401126/2014-5Universidad de Sevilla CNPq303702/2011-

    Puzzle games: a metaphor for computational thinking

    Get PDF
    • …
    corecore