17 research outputs found

    From model-driven to data-driven : a review of hysteresis modeling in structural and mechanical systems

    Get PDF
    Hysteresis is a natural phenomenon that widely exists in structural and mechanical systems. The characteristics of structural hysteretic behaviors are complicated. Therefore, numerous methods have been developed to describe hysteresis. In this paper, a review of the available hysteretic modeling methods is carried out. Such methods are divided into: a) model-driven and b) datadriven methods. The model-driven method uses parameter identification to determine parameters. Three types of parametric models are introduced including polynomial models, differential based models, and operator based models. Four algorithms as least mean square error algorithm, Kalman filter algorithm, metaheuristic algorithms, and Bayesian estimation are presented to realize parameter identification. The data-driven method utilizes universal mathematical models to describe hysteretic behavior. Regression model, artificial neural network, least square support vector machine, and deep learning are introduced in turn as the classical data-driven methods. Model-data driven hybrid methods are also discussed to make up for the shortcomings of the two methods. Based on a multi-dimensional evaluation, the existing problems and open challenges of different hysteresis modeling methods are discussed. Some possible research directions about hysteresis description are given in the final section

    Recurrent Neural Network Dual Resistance Control of Multiple Memory Shape Memory Alloys

    Get PDF
    Shape memory alloys (SMAs) are materials with extraordinary thermomechanical properties which have caused numerous engineering advances. NiTi SMAs in particular have been studied for decades revealing many useful characteristics relative to other SMA compositions. Their application has correspondingly been widespread, seeing use in the robotics, automotive, and aerospace industries, among others. Nevertheless, several limitations inherent to SMAs exist which inhibit their applicability, including their inherent single transformation temperature and their complex hysteretic actuation behaviour. To overcome the former challenge, one method utilizes high energy laser processing to perform localized vaporization of nickel and accurately adjust its transformation temperatures. This method can reliably produce NiTi SMAs with multiple monolithic transformation memories. There have also been attempts to overcome the latter of the aforementioned challenges by designing systems which model NiTi's hysteretic behaviour. When applied to actuators with a single transformation memory, these methods require the use of external sensors for modeling actuators with varying current and load, driving up the cost, weight, and complexity of the actuator. Embedding a second transformation memory with different phase into NiTi actuators can overcome this issue. By measuring electrical resistance across the two phases, sufficient information can be extracted for differentiating events caused by heating from those caused by applied load. The current study examines NiTi wires with two embedded transformation memories and utilizes recurrent neural networks for interpreting the sensed data. The knowledge gained through this study was used to create a recurrent neural network-based model which can accurately estimate the position and force applied to the NiTi actuator without the use of external sensors. The first part of the research focused on obtaining a comprehensive thermomechanical characterization of laser processed and thermomechanically post-processed NiTi wires with two embedded transformation memories, with one memory exhibiting full SME and the second partial PE at room temperature. A second objective of this section was to acquire cycling data from the processed wires which would be used for training the artificial neural networks in the following section of the study. The selected laser processing and post-processing parameters resulted in a transformation temperature increase of 61.5°C and 35.3°C for Af and Ms, respectively, relative to base metal. Furthermore, the post-processing was found to successfully restore the majority of the lost mechanical properties, with the ultimate tensile strength recovered to 84% of its corresponding base metal value. This research resulted in the fabrication of NiTi wires with two distinct embedded transformation memories, exhibiting sufficient mechanical and cyclic properties for the next phase of the research. Once an acceptable amount of NiTi actuation cycling data was acquired, the second part of the research consisted of training multiple recurrent neural network architectures with varying hyperparameters on the data and selecting the model which achieved the best performance. The hyperparameter optimization was performed on data with constant applied load, resulting in a model which successfully estimated the actuator's position with 99.2% accuracy. The optimized hyperparameters were then used to create a recurrent neural network model which was trained to estimate both position and force using the full acquired data set, capitalizing on the two embedded memories. The model achieved overall position and force estimation accuracy of 98.5% and 96.0%, respectively, on data used to train it, and 96.6% and 89.8%, respectively, on data it had never before encountered. The result of this study was the successful development of an accurate RNN-based position and force estimation model for NiTi actuators with two embedded phases. Using this model, a position controller was implemented which resulted in 95.9% position accuracy under varying applied loads

    Non-linear actuators and simulation tools for rehabilitation devices

    Get PDF
    Mención Internacional en el título de doctorRehabilitation robotics is a field of research that investigates the applications of robotics in motor function therapy for recovering the motor control and motor capability. In general, this type of rehabilitation has been found effective in therapy for persons suffering motor disorders, especially due to stroke or spinal cord injuries. This type of devices generally are well tolerated by the patients also being a motivation in rehabilitation therapy. In the last years the rehabilitation robotics has become more popular, capturing the attention at various research centers. They focused on the development more effective devices in rehabilitation therapy, with a higher acceptance factor of patients tacking into account: the financial cost, weight and comfort of the device. Among the rehabilitation devices, an important category is represented by the rehabilitation exoskeletons, which in addition to the human skeletons help to protect and support the external human body. This became more popular between the rehabilitation devices due to the easily adapting with the dynamics of human body, possibility to use them such as wearable devices and low weight and dimensions which permit easy transportation. Nowadays, in the development of any robotic device the simulation tools play an important role due to their capacity to analyse the expected performance of the system designed prior to manufacture. In the development of the rehabilitation devices, the biomechanical software which is capable to simulate the behaviour interaction between the human body and the robotics devices, play an important role. This helps to choose suitable actuators for the rehabilitation device, to evaluate possible mechanical designs, and to analyse the necessary controls algorithms before being tested in real systems. This thesis presents a research proposing an alternative solution for the current systems of actuation on the exoskeletons for robotic rehabilitation. The proposed solution, has a direct impact, improving issues like device weight, noise, fabrication costs, size an patient comfort. In order to reach the desired results, a biomechanical software based on Biomechanics of Bodies (BoB) simulator where the behaviour of the human body and the rehabilitation device with his actuators can be analysed, was developed. In the context of the main objective of this research, a series of actuators have been analysed, including solutions between the non-linear actuation systems. Between these systems, two solutions have been analysed in detail: ultrasonic motors and Shape Memory Alloy material. Due to the force - weight characteristics of each device (in simulation with the human body), the Shape Memory Alloy material was chosen as principal actuator candidate for rehabilitation devices. The proposed control algorithm for the actuators based on Shape Memory Alloy, was tested over various configurations of actuators design and analysed in terms of energy eficiency, cooling deformation and movement. For the bioinspirated movements, such as the muscular group's biceps-triceps, a control algorithm capable to control two Shape Memory Alloy based actuators in antagonistic movement, has been developed. A segmented exoskeleton based on Shape Memory Alloy actuators for the upper limb evaluation and rehabilitation therapy was proposed to demosntrate the eligibility of the actuation system. This is divided in individual rehabilitation devices for the shoulder, elbow and wrist. The results of this research was tested and validated in the real elbow exoskeleton with two degrees of freedom developed during this thesis.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Eduardo Rocón de Lima.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Martin Stoele

    Fabrication and Model Based Position Estimation of Novel Laser Processed Shape Memory Alloy Actuator with an Embedded Strain Gauge Sensor

    Get PDF
    Shape Memory Alloys have sparked great amount of interest in the eld of actuation over the past decades. Until now, sensorless position estimation of SMA actuators under dynamic unknown applied stresses has not been feasible due to the complexity of the system and the number of unknown parameters which the proposed extra information obtained from the embedded sensor solves. In this thesis, a novel laser processed NiTi Shape Memory Alloy (SMA) actuator is proposed containing two di erent material compositions in one monolithic piece of actuator wire. Each of these compositions behaves di erently at room temperature, one exhibits a shape memory e ect (SME) for actuation, and the other is pseudo-elastic (PE) which is used to enable an embedded sensor. Fabrication of the wire included laser processing, heat-treatment, and cold-working procedures. The actuator wire was subsequently trained to stabilize its properties using iso-stress thermal cycling. Additionally, a novel model-based sensorless position estimation algorithm is presented. Proposed model can estimate the position of the actuator under varying applied stresses with an approximate accuracy of 95% only using dual resistance measurements across the two di erent material compositions. The proposed actuator has signi cant application in robotics, wearables, haptics, automotive, and any other application which the mechanical load is not known in advance. Two simple position and force controller schemes using the proposed dual-resistance measurement position (and force) estimation are discussed and the control results presented. The proposed position estimation algorithm is used for the feedback-signal of a simple PID position and force controller scheme. Moreover, another novel sensorless position estimation of SMA actuator wires are presented using the power measurement of the standing wave cause by the re ection of a high-frequency signal at an un-terminated end

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Object Detection and Tracking in Cooperative Multi-Robot Transportation

    Get PDF
    Contemporary manufacturing systems imply the utilization of autonomous robotic systems, mainly for the execution of manipulation and transportation tasks. With a goal to reduce transportation and manipulation time, improve efficiency, and achieve flexibility of intelligent manufacturing systems, two or more intelligent mobile robots can be exploited. Such multi-robot systems require coordination and some level of communication between heterogeneous or homogeneous robotic systems. In this paper, we propose the utilization of two heterogeneous robotic systems, original intelligent mobile robots RAICO (Robot with Artificial Intelligence based COgnition) and DOMINO (Deep learning-based Omnidirectional Mobile robot with Intelligent cOntrol), for transportation tasks within a laboratory model of a manufacturing environment. In order to reach an adequate cooperation level and avoid collision while moving along predefined paths, our own developed intelligent mobile robots RAICO and DOMINO will communicate their current poses, and object detection and tracking system is developed. A stereo vision system equipped with two parallelly placed industrial-grade cameras is used for image acquisition, while convolutional neural networks are utilized for object detection, classification, and tracking. The proposed object detection and tracking system enables real-time tracking of another mobile robot within the same manufacturing environment. Furthermore, continuous information about mobile robot poses and the size of the bounding box generated by the convolutional neural network in the process of detection of another mobile robot is used for estimation of object movement and collision avoidance. Mobile robot localization through time is performed based on kinematic models of two intelligent mobile robots, and conducted experiments within a laboratory model of manufacturing environment confirm the applicability of the proposed framework for object detection and collision avoidance

    Battery Systems and Energy Storage beyond 2020

    Get PDF
    Currently, the transition from using the combustion engine to electrified vehicles is a matter of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g., the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries even more. The cost of lithium ion batteries has become competitive in the last few years, and lithium ion batteries are expected to dominate the battery market in the next decade. However, despite remarkable progress, there is still a strong need for improvements in the performance of lithium ion batteries. Further improvements are not only expected in the field of electrochemistry but can also be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue addresses the progress in battery and energy storage development by covering areas that have been less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in concordance with progress in new materials and pack design solutions

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems
    corecore