38,732 research outputs found

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    Ghent University-Department of Textiles: annual report 2013

    Get PDF

    Implementation Action Plan for organic food and farming research

    Get PDF
    The Implementation Action Plan completes TP Organics’ trilogy of key documents of the Research Vision to 2025 (Niggli et al 2008) and the Strategic Research Agenda (Schmid et al 2009). The Implementation Action Plan addresses important areas for a successful implementation of the Strategic Research Agenda. It explores the strength of Europe’s organic sector on the world stage with about one quarter of the world’s organic agricultural land in 2008 and accounting for more than half of the global organic market. The aims and objectives of organic farming reflect a broad range of societal demands on the multiple roles of agriculture and food production of not only producing commodities but also ecosystem services. These are important for Europe’s economic success, the resilience of its farms and prosperity in its rural areas. The organic sector is a leading market for quality and authenticity: values at the heart of European food culture. Innovation is important across the EU economy, and no less so within the organic sector. The Implementation Action Plan devotes its third chapter to considering how innovation can be stimulated through organic food and farming research and, crucially, translated into changes in business and agricultural practice. TP Organics argues for a broad understanding of innovation that includes technology, know-how and social/organisational innovations. Accordingly, innovation can involve different actors throughout the food sector. Many examples illustrate innovations in the organic sector includign and beyond technology. The various restrictions imposed by organic standards have driven change and turned organic farms and food businesses into creative living laboratories for smart and green innovations and the sector will continue to generate new examples. The research topics proposed by TP Organics in the Strategic Research Agenda can drive innovation in areas as wide ranging as production practices for crops, technologies for livestock, food processing, quality management, on-farm renewable energy or insights into the effects of consumption of organic products on disease and wellbeing and life style of citizens. Importantly, many approaches developed within the sector are relevant and useful beyond the specific sector. The fourth chapter addresses knowledge management in organic agriculture, focusing on the further development of participatory research methods. Participatory (or trans-disciplinary) models recognise the worth and importance of different forms of knowledge and reduced boundaries between the generators and the users of knowledge, while respecting and benefitting from transparent division of tasks. The emphasis on joint creation and exchange of knowledge makes them valuable as part of a knowledge management toolkit as they have the capacity to enhance the translation of research outcomes into practical changes and lead to real-world progress. The Implementation Action Plan argues for the wider application of participatory methods in publicly-funded research and also proposes some criteria for evaluating participatory research, such as the involvement and satisfaction of stakeholders as well as real improvements in sustainability and delivery of public goods/services. European agriculture faces specific challenges but at the same time Europe has a unique potential for the development of agro-ecology based solutions that must be supported through well focused research. TP Organics believes that the most effective approaches in agriculture and food research will be systems-based, multi- and trans-disciplinary, and that in the development of research priorities, the interconnections between biodiversity, dietary diversity, functional diversity and health must be taken into account. Chapter five of the action plan identifies six themes which could be used to organise research and innovation activities in agriculture under Europe’s 8th Framework Programme on Research Cooperation: • Eco-functional intensification – A new area of agricultural research which aims to harness beneficial activities of the ecosystem to increase productivity in agriculture. • The economics of high output / low input farming Developing reliable economic and environmental assessments of new recycling, renewable-based and efficiency-boosting technologies for agriculture. • Health care schemes for livestock Shifting from therapeutics to livestock health care schemes based on good husbandry and disease prevention. • Resilience and “sustainagility” Dealing with a more rapidly changing environment by focusing on ‘adaptive capacity’ to help build resilience of farmers, farms and production methods. • From farm diversity to food diversity and health and wellbeing of citizens Building on existing initiatives to reconnect consumers and producers, use a ‘whole food chain’ approach to improve availability of natural and authentic foods. • Creating centres of innovation in farming communities A network of centres in Europe applying and developing trans-disciplinary and participatory scientific approaches to support innovation among farmers and SMEs and improving research capacities across Europe

    The Abertay Code Bar – unlocking access to university-generated computer games intellectual poperty

    Get PDF
    Progress report on a digital platform and dual licensing model developed to unlock access to a University repository of new and legacy computer games based Intellectual Property (IP) assets for educational and commercial use. The digital creative industries have been identified by a number of governments as a priority area in delivering sustainable economic growth. Code Bar is an innovation that allows digital products to be commercially successful beyond the end of the Dare competition or coursework submission. To be selected for Code Bar, game products must be well designed for both player and market; technically robust (i.e. operating consistently and reliably on a single/multiple platforms), and be free from ambiguity around 3rd party IP. We describe various technical, pedagogic and legal challenges in developing the digital platform, licensing model and packaging of computer games products for release through the platform. The model is extendable beyond computer games to other software products

    Mapping and Developing Service Design Research in the UK.

    Get PDF
    This report is the outcome of the Service Design Research UK (SDR UK) Network with Lancaster University as primary investigator and London College of Communication, UAL as co-investigator. This project was funded as part of an Arts and Humanities Research Council Network grant. Service Design Research UK (SDR UK), funded by an AHRC Network Grant, aims to create a UK research network in an emerging field in Design that is Service Design. This field has a recent history and a growing, but still small and dispersed, research community that strongly needs support and visibility to consolidate its knowledge base and enhance its potential impact. Services represent a significant part of the UK economy and can have a transformational role in our society as they affect the way we organize, move, work, study or take care of our health and family. Design introduces a more human centred and creative approach to service innovation; this is critical to delivering more effective and novel solutions that have the potential to tackle contemporary challenges. Service Design Research UK reviewed and consolidated the emergence of Service Design within the estalished field of Design

    Designing a Design Thinking Approach to HRD

    Get PDF
    This article considers the value of design thinking as applied to a HRD context, Specifically, it demonstrates how design thinking can be employed through a case study drawn from the GETM3 programme. It reports on the design, development, and delivery of a design thinking workshop which was created to draw out and develop ideas from students and recent graduates about the fundamental training and skills requirements of future employment. While design thinking has been widely deployed in innovation and entrepreneurship, its application to HRD is still very much embryonic. Our overview illustrates how the key characteristics of the design thinking process resonate with those required from HRD (e.g. focus on end user, problem solving, feedback, and innovation). Our contribution stems from illuminating a replicable application of design system thinking including both the process and the outcomes of this application. We conclude that design thinking is likely to serve as a critical mind-set, tool, and strategy to facilitate HRD practitioners and advance HRD practice

    Designing a design thinking approach to HRD

    Get PDF
    This article considers the value of design thinking as applied to a HRD context, Specifically, it demonstrates how design thinking can be employed through a case study drawn from the GETM3 programme. It reports on the design, development, and delivery of a design thinking workshop which was created to draw out and develop ideas from students and recent graduates about the fundamental training and skills requirements of future employment. While design thinking has been widely deployed in innovation and entrepreneurship, its application to HRD is still very much embryonic. Our overview illustrates how the key characteristics of the design thinking process resonate with those required from HRD (e.g. focus on end user, problem solving, feedback, and innovation). Our contribution stems from illuminating a replicable application of design system thinking including both the process and the outcomes of this application. We conclude that design thinking is likely to serve as a critical mind-set, tool, and strategy to facilitate HRD practitioners and advance HRD practice

    Industrial-like vehicle platforms for postgraduate laboratory courses on robotics

    Get PDF
    The interdisciplinary nature of robotics allows mobile robots to be used successfully in a broad range of courses at the postgraduate level and in Ph.D. research. Practical industrial-like mobile robotic demonstrations encourage students and increase their motivation by providing them with learning benefits not achieved with traditional educational robotic platforms. This paper presents VEGO, an industrial-like modular vehicle platform for robotic education with an appropriate infrastructure that has been demonstrated to be very useful at the postgraduate level. Besides learning engineering concepts, in performing industrial-like exercises, students develop valuable skills such as teamwork and the capacity to solve problems similar to those they may encounter in a real industrial environment. The developed infrastructure represents a valuable platform for robotic education that can be used in many different disciplines as a way to demonstrate how to cope with the difficulties and challenges related to the development of industrial infrastructure systems. The platform evaluation proved its ability to inculcate the expected engineering skills. A novel approach is adopted through the use of multidisciplinary and close-to-industrial-reality platforms developed under an incremental approach and using an open and customizable structure.This work was supported in part by the Fundación Séneca of the Murcia Region under Grant 15374/PI/10, the CICYT EXPLORE under Grant TIN2009-08572, and the INNPLANTA SiveLab, Ministry of Science and Innovation, Spain, under Grant INP-2011-0022-PCT-430000-ACT9

    Smart textiles to promote multidisciplinary stem training

    Get PDF
    Smart textiles consist of multi-disciplinary knowledge. Disciplines such as physics, mathematics, material science or electrics is needed in order to be able to design and manufacture a smart textiles product. This is why knowledge in smart textiles may be used to showcase high school and university students in basic years of preparation some applications of technical disciplines they are learning. The Erasmus+ project “Smart textiles for STEM training – Skills4Smartex” is a strategic partnership project for Vocational Education and Training aiming to promote additional knowledge and skills for trainees in technical fields, for a broader understanding of interconnections and application of STEM, via smart textiles. Skills4Smartex is an ongoing project within the period Oct. 2018-Sept. 2020, with a partnership of six research providers in textiles www.skills4smartex.eu. The project has three intellectual outputs: the Guide for smart practices (O1), the Course in smart textiles (O2) and the Dedicated e-learning Instrument (O3). The Guide for smart practices consists in the analysis of a survey with 63 textile companies on partnership level and interviews with 18 companies. Main aim of O1 is to transfer from source site to target sites technical and smart textile best practices and the profile of workforce needed for the future textile industry. The needs analysis achieved within O1will serve to conceive the Course for smart textiles with 42 modules (O2), to be accessed via the Dedicated e-learning Instrument (O3). All outputs are available with free access on the e-learning platform: www.adva2tex.eu/portal

    The game jam movement:disruption, performance and artwork

    Get PDF
    This paper explores the current conventions and intentions of the game jam - contemporary events that encourage the rapid, collaborative creation of game design prototypes. Game jams are often renowned for their capacity to encourage creativity and the development of alternative, innovative game designs. However, there is a growing necessity for game jams to continue to challenge traditional development practices through evolving new formats and perspectives to maintain the game jam as a disruptive, refreshing aspect of game development culture. As in other creative jam style events, a game jam is not only a process but also, an outcome. Through a discussion of the literature this paper establishes a theoretical basis with which to analyse game jams as disruptive, performative processes that result in original creative artefacts. In support of this, case study analysis of Development Cultures: a series of workshops that centred on innovation and new forms of practice through play, chance, and experimentation, is presented. The findings indicate that game jams can be considered as processes that inspire creativity within a community and that the resulting performances can be considered as a form of creative artefact, thus parallels can be drawn between game jams and performative and interactive art
    corecore