5,417 research outputs found

    Statistically Stable Estimates of Variance in Radioastronomical Observations as Tools for RFI Mitigation

    Full text link
    A selection of statistically stable (robust) algorithms for data variance calculating has been made. Their properties have been analyzed via computer simulation. These algorithms would be useful if adopted in radio astronomy observations in the presence of strong sporadic radio frequency interference (RFI). Several observational results have been presented here to demonstrate the effectiveness of these algorithms in RFI mitigation

    Space shuttle landing navigation using precision distance measuring equipment

    Get PDF
    Evaluation of precision distance measuring equipment for space shuttle landing navigatio

    Centered solutions for uncertain linear equations

    Get PDF
    Our contribution is twofold. Firstly, for a system of uncertain linear equations where the uncertainties are column-wise and reside in general convex sets, we derive convex representations for united and tolerable solution sets. Secondly, to obtain centered solutions for uncertain linear equations, we develop a new method based on adjustable robust optimization (ARO) techniques to compute the maximum size inscribed convex body (MCB) of the set of the solutions. In general, the obtained MCB is an inner approximation of the solution set, and its center is a potential solution to the system. We use recent results from ARO to characterize for which convex bodies the obtained MCB is optimal. We compare our method both theoretically and numerically with an existing method that minimizes the worst-case violation. Applications to the input–output model, Colley’s Matrix Rankings and Article Influence Scores demonstrate the advantages of the new method

    A Learning-Based Approach to Caching in Heterogenous Small Cell Networks

    Full text link
    A heterogenous network with base stations (BSs), small base stations (SBSs) and users distributed according to independent Poisson point processes is considered. SBS nodes are assumed to possess high storage capacity and to form a distributed caching network. Popular files are stored in local caches of SBSs, so that a user can download the desired files from one of the SBSs in its vicinity. The offloading-loss is captured via a cost function that depends on the random caching strategy proposed here. The popularity profile of cached content is unknown and estimated using instantaneous demands from users within a specified time interval. An estimate of the cost function is obtained from which an optimal random caching strategy is devised. The training time to achieve an ϵ>0\epsilon>0 difference between the achieved and optimal costs is finite provided the user density is greater than a predefined threshold, and scales as N2N^2, where NN is the support of the popularity profile. A transfer learning-based approach to improve this estimate is proposed. The training time is reduced when the popularity profile is modeled using a parametric family of distributions; the delay is independent of NN and scales linearly with the dimension of the distribution parameter.Comment: 12 pages, 5 figures, published in IEEE Transactions on Communications, 2016. arXiv admin note: text overlap with arXiv:1504.0363
    • …
    corecore