671,560 research outputs found

    Set-Theoretic Geology

    Full text link
    A ground of the universe V is a transitive proper class W subset V, such that W is a model of ZFC and V is obtained by set forcing over W, so that V = W[G] for some W-generic filter G subset P in W . The model V satisfies the ground axiom GA if there are no such W properly contained in V . The model W is a bedrock of V if W is a ground of V and satisfies the ground axiom. The mantle of V is the intersection of all grounds of V . The generic mantle of V is the intersection of all grounds of all set-forcing extensions of V . The generic HOD, written gHOD, is the intersection of all HODs of all set-forcing extensions. The generic HOD is always a model of ZFC, and the generic mantle is always a model of ZF. Every model of ZFC is the mantle and generic mantle of another model of ZFC. We prove this theorem while also controlling the HOD of the final model, as well as the generic HOD. Iteratively taking the mantle penetrates down through the inner mantles to what we call the outer core, what remains when all outer layers of forcing have been stripped away. Many fundamental questions remain open.Comment: 44 pages; commentary concerning this article can be made at http://jdh.hamkins.org/set-theoreticgeology

    Local tomography and the Jordan structure of quantum theory

    Get PDF
    Using a result of H. Hanche-Olsen, we show that (subject to fairly natural constraints on what constitutes a system, and on what constitutes a composite system), orthodox finite-dimensional complex quantum mechanics with superselection rules is the only non-signaling probabilistic theory in which (i) individual systems are Jordan algebras (equivalently, their cones of unnormalized states are homogeneous and self-dual), (ii) composites are locally tomographic (meaning that states are determined by the joint probabilities they assign to measurement outcomes on the component systems) and (iii) at least one system has the structure of a qubit. Using this result, we also characterize finite dimensional quantum theory among probabilistic theories having the structure of a dagger-monoidal category

    Minisuperspaces: Observables and Quantization

    Get PDF
    A canonical transformation is performed on the phase space of a number of homogeneous cosmologies to simplify the form of the scalar (or, Hamiltonian) constraint. Using the new canonical coordinates, it is then easy to obtain explicit expressions of Dirac observables, i.e.\ phase space functions which commute weakly with the constraint. This, in turn, enables us to carry out a general quantization program to completion. We are also able to address the issue of time through ``deparametrization'' and discuss physical questions such as the fate of initial singularities in the quantum theory. We find that they persist in the quantum theory {\it inspite of the fact that the evolution is implemented by a 1-parameter family of unitary transformations}. Finally, certain of these models admit conditional symmetries which are explicit already prior to the canonical transformation. These can be used to pass to quantum theory following an independent avenue. The two quantum theories --based, respectively, on Dirac observables in the new canonical variables and conditional symmetries in the original ADM variables-- are compared and shown to be equivalent.Comment: 34 page
    corecore