695 research outputs found

    What Java Developers Know About Compatibility, And Why This Matters

    Full text link
    Real-world programs are neither monolithic nor static -- they are constructed using platform and third party libraries, and both programs and libraries continuously evolve in response to change pressure. In case of the Java language, rules defined in the Java Language and Java Virtual Machine Specifications define when library evolution is safe. These rules distinguish between three types of compatibility - binary, source and behavioural. We claim that some of these rules are counter intuitive and not well-understood by many developers. We present the results of a survey where we quizzed developers about their understanding of the various types of compatibility. 414 developers responded to our survey. We find that while most programmers are familiar with the rules of source compatibility, they generally lack knowledge about the rules of binary and behavioural compatibility. This can be problematic when organisations switch from integration builds to technologies that require dynamic linking, such as OSGi. We have assessed the gravity of the problem by studying how often linkage-related problems are referenced in issue tracking systems, and find that they are common

    Approaches to Interpreter Composition

    Get PDF
    In this paper, we compose six different Python and Prolog VMs into 4 pairwise compositions: one using C interpreters; one running on the JVM; one using meta-tracing interpreters; and one using a C interpreter and a meta-tracing interpreter. We show that programs that cross the language barrier frequently execute faster in a meta-tracing composition, and that meta-tracing imposes a significantly lower overhead on composed programs relative to mono-language programs.Comment: 33 pages, 1 figure, 9 table

    Making an Embedded DBMS JIT-friendly

    Get PDF
    While database management systems (DBMSs) are highly optimized, interactions across the boundary between the programming language (PL) and the DBMS are costly, even for in-process embedded DBMSs. In this paper, we show that programs that interact with the popular embedded DBMS SQLite can be significantly optimized - by a factor of 3.4 in our benchmarks - by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts of SQLite's C interpreter with RPython code and composing the resulting meta-tracing virtual machine (VM) - called SQPyte - with the PyPy VM. SQPyte does not compromise stand-alone SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.Comment: 24 pages, 18 figure

    JVM-hosted languages: They talk the talk, but do they walk the walk?

    Get PDF
    The rapid adoption of non-Java JVM languages is impressive: major international corporations are staking critical parts of their software infrastructure on components built from languages such as Scala and Clojure. However with the possible exception of Scala, there has been little academic consideration and characterization of these languages to date. In this paper, we examine four nonJava JVM languages and use exploratory data analysis techniques to investigate differences in their dynamic behavior compared to Java. We analyse a variety of programs and levels of behavior to draw distinctions between the different programming languages. We brieļ¬‚y discuss the implications of our ļ¬ndings for improving the performance of JIT compilation and garbage collection on the JVM platform

    Workload characterization of JVM languages

    Get PDF
    Being developed with a single language in mind, namely Java, the Java Virtual Machine (JVM) nowadays is targeted by numerous programming languages. Automatic memory management, Just-In-Time (JIT) compilation, and adaptive optimizations provided by the JVM make it an attractive target for different language implementations. Even though being targeted by so many languages, the JVM has been tuned with respect to characteristics of Java programs only -- different heuristics for the garbage collector or compiler optimizations are focused more on Java programs. In this dissertation, we aim at contributing to the understanding of the workloads imposed on the JVM by both dynamically-typed and statically-typed JVM languages. We introduce a new set of dynamic metrics and an easy-to-use toolchain for collecting the latter. We apply our toolchain to applications written in six JVM languages -- Java, Scala, Clojure, Jython, JRuby, and JavaScript. We identify differences and commonalities between the examined languages and discuss their implications. Moreover, we have a close look at one of the most efficient compiler optimizations - method inlining. We present the decision tree of the HotSpot JVM's JIT compiler and analyze how well the JVM performs in inlining the workloads written in different JVM languages

    SPEEDY: An Eclipse-based IDE for invariant inference

    Full text link
    SPEEDY is an Eclipse-based IDE for exploring techniques that assist users in generating correct specifications, particularly including invariant inference algorithms and tools. It integrates with several back-end tools that propose invariants and will incorporate published algorithms for inferring object and loop invariants. Though the architecture is language-neutral, current SPEEDY targets C programs. Building and using SPEEDY has confirmed earlier experience demonstrating the importance of showing and editing specifications in the IDEs that developers customarily use, automating as much of the production and checking of specifications as possible, and showing counterexample information directly in the source code editing environment. As in previous work, automation of specification checking is provided by back-end SMT solvers. However, reducing the effort demanded of software developers using formal methods also requires a GUI design that guides users in writing, reviewing, and correcting specifications and automates specification inference.Comment: In Proceedings F-IDE 2014, arXiv:1404.578
    • ā€¦
    corecore