387 research outputs found

    Advanced Materials and Technologies in Nanogenerators

    Get PDF
    This reprint discusses the various applications, new materials, and evolution in the field of nanogenerators. This lays the foundation for the popularization of their broad applications in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics, and artificial intelligence

    Towards a circular economy: fabrication and characterization of biodegradable plates from sugarcane waste

    Get PDF
    Bagasse pulp is a promising material to produce biodegradable plates. Bagasse is the fibrous residue that remains after sugarcane stalks are crushed to extract their juice. It is a renewable resource and is widely available in many countries, making it an attractive alternative to traditional plastic plates. Recent research has shown that biodegradable plates made from Bagasse pulp have several advantages over traditional plastic plates. For example, they are more environmentally friendly because they are made from renewable resources and can be composted after use. Additionally, they are safer for human health because they do not contain harmful chemicals that can leach into food. The production process for Bagasse pulp plates is also relatively simple and cost-effective. Bagasse is first collected and then processed to remove impurities and extract the pulp. The pulp is then molded into the desired shape and dried to form a sturdy plate. Overall, biodegradable plates made from Bagasse pulp are a promising alternative to traditional plastic plates. They are environmentally friendly, safe for human health, and cost-effective to produce. As such, they have the potential to play an important role in reducing plastic waste and promoting sustainable practices. Over the years, the world was not paying strict attention to the impact of rapid growth in plastic use. As a result, uncontrollable volumes of plastic garbage have been released into the environment. Half of all plastic garbage generated worldwide is made up of packaging materials. The purpose of this article is to offer an alternative by creating bioplastic goods that can be produced in various shapes and sizes across various sectors, including food packaging, single-use tableware, and crafts. Products made from bagasse help address the issue of plastic pollution. To find the optimum option for creating bagasse-based biodegradable dinnerware in Egypt and throughout the world, researchers tested various scenarios. The findings show that bagasse pulp may replace plastics in biodegradable packaging. As a result of this value-added utilization of natural fibers, less waste and less of it ends up in landfills. The practical significance of this study is to help advance low-carbon economic solutions and to produce secure bioplastic materials that can replace Styrofoam in tableware and food packaging production

    Advances in Heat and Mass Transfer in Micro/Nano Systems

    Get PDF
    The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems. Heat and mass transfer are crucial processes in such systems, and they have attracted great interest in recent years. Tremendous effort, in terms of theoretical analyses, experimental measurements, numerical simulation, and practical applications, has been devoted to improve our understanding of complex heat and mass transfer processes and behaviors in such micro/nanosystems. This Special Issue is dedicated to showcasing recent advances in heat and mass transfer in micro- and nanosystems, with particular focus on the development of new models and theories, the employment of new experimental techniques, the adoption of new computational methods, and the design of novel micro/nanodevices. Thirteen articles have been published after peer-review evaluations, and these articles cover a wide spectrum of active research in the frontiers of micro/nanosystems

    Dynamic operation, efficient calibration, and advanced data analysis of gas sensors : from modelling to real-world operation

    Get PDF
    This thesis demonstrates the use of dynamic operation, efficient calibration and advanced data analysis using metal oxide semiconductor (MOS) gas sensors as an example – from modeling to real-world operation. The necessary steps for an applicationspecific, selective indoor volatile organic compound (VOC) measurement system are addressed, analyzed and improved. Factors such as sensors, operation, electronics and calibration are considered. The developed methods and tools are universally transferable to other gas sensors and applications. The basis for selective measurement is temperature cyclic operation (TCO). The model-based understanding of a semiconductor gas sensor in TCO for the optimized development of operating modes and data evaluation is addressed and, for example, the tailored and stable detection of short gas pulses is developed. Two successful interlaboratory tests for the measurement of VOCs in independent laboratories are described. Selective measurements of VOCs in the laboratory and in the field are successfully demonstrated. Calibrations using the proposed techniques of randomized design of experiment (DoE), model-based data evaluation and calibration with machine learning methods are employed. The calibrated models are compared with analytical measurements using release tests. The high agreement of the results is unique in current research.Diese Thesis zeigt den Einsatz von dynamischem Betrieb, effizienter Kalibrierung, und fortschrittlicher Datenanalyse am Beispiel von Metalloxid Halbleiter (MOS) Gassensoren – von der Modellierung bis zum realen Betrieb. Die notwendigen Schritte für ein anwendungsspezifisches, selektives Messystem für flüchtige organische Verbindungen (VOC) im Innenraum werden adressiert, analysiert und verbessert. Faktoren wie z.B. Sensoren, Funktionsweise, Elektronik und Kalibrierung werden berücksichtigt. Die entwickelten Methoden und Tools sind universell auf andere Gassensoren und Anwendungen übertragbar. Grundlage für die selektive Messung ist der temperaturzyklische Betrieb (TCO). Auf das modellbasierte Verständnis eines Halbleitergassensors im TCO für die optimierte Entwicklung von Betriebsmodi und Datenauswertung wird eingegangen und z.B. die maßgeschneiderte und stabile Detektion von kurzen Gaspulsen entwickelt. Zwei erfolgreiche Ringversuche zur Messung von VOCs in unabhängigen Laboren werden beschrieben. Selektive Messungen verschiedener VOCs im Labor und im Feld werden erfolgreich demonstriert. Dabei kommen Kalibrierungen mit den vorgeschlagenen Techniken des randomisierten Design of Experiment (DoE), der modellbasierten Datenauswertung und Kalibrierung mit Methoden des maschinellen Lernens zum Einsatz. Die kalibrierten Modelle werden anhand von Freisetzungstests mit analytischen Messungen verglichen. Die hohe Übereinstimmung der Ergebnisse ist einzigartig in der aktuellen Forschung

    THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants

    Full text link
    The THIESEL 2022. Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Payri Marín, R.; Serrano Cruz, JR. (2022). THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thiesel.2022.632801EDITORIA

    Microfluidics for Biosensing

    Get PDF
    There are 12 papers published with 8 research articles, 3 review articles and 1 perspective. The topics cover: Biomedical microfluidics Lab-on-a-chip Miniaturized systems for chemistry and life science (MicroTAS) Biosensor development and characteristics Imaging and other detection technologies Imaging and signal processing Point-of-care testing microdevices Food and water quality testing and control We hope this collection could promote the development of microfluidics and point-of-care testing (POCT) devices for biosensing

    INTER-ENG 2020

    Get PDF
    These proceedings contain research papers that were accepted for presentation at the 14th International Conference Inter-Eng 2020 ,Interdisciplinarity in Engineering, which was held on 8–9 October 2020, in Târgu Mureș, Romania. It is a leading international professional and scientific forum for engineers and scientists to present research works, contributions, and recent developments, as well as current practices in engineering, which is falling into a tradition of important scientific events occurring at Faculty of Engineering and Information Technology in the George Emil Palade University of Medicine, Pharmacy Science, and Technology of Târgu Mures, Romania. The Inter-Eng conference started from the observation that in the 21st century, the era of high technology, without new approaches in research, we cannot speak of a harmonious society. The theme of the conference, proposing a new approach related to Industry 4.0, was the development of a new generation of smart factories based on the manufacturing and assembly process digitalization, related to advanced manufacturing technology, lean manufacturing, sustainable manufacturing, additive manufacturing, and manufacturing tools and equipment. The conference slogan was “Europe’s future is digital: a broad vision of the Industry 4.0 concept beyond direct manufacturing in the company”

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the newborn to the adult and elderly. Over the years the initial issues have grown and spread also in other fields of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years in Firenze, Italy. This edition celebrates twenty-two years of uninterrupted and successful research in the field of voice analysis
    • …
    corecore