1,734 research outputs found

    Working together: a review on safe human-robot collaboration in industrial environments

    Get PDF
    After many years of rigid conventional procedures of production, industrial manufacturing is going through a process of change toward flexible and intelligent manufacturing, the so-called Industry 4.0. In this paper, human-robot collaboration has an important role in smart factories since it contributes to the achievement of higher productivity and greater efficiency. However, this evolution means breaking with the established safety procedures as the separation of workspaces between robot and human is removed. These changes are reflected in safety standards related to industrial robotics since the last decade, and have led to the development of a wide field of research focusing on the prevention of human-robot impacts and/or the minimization of related risks or their consequences. This paper presents a review of the main safety systems that have been proposed and applied in industrial robotic environments that contribute to the achievement of safe collaborative human-robot work. Additionally, a review is provided of the current regulations along with new concepts that have been introduced in them. The discussion presented in this paper includes multidisciplinary approaches, such as techniques for estimation and the evaluation of injuries in human-robot collisions, mechanical and software devices designed to minimize the consequences of human-robot impact, impact detection systems, and strategies to prevent collisions or minimize their consequences when they occur

    A human-oriented design process for collaborative robotics

    Get PDF
    The potential of collaborative robotics often does not materialize in an efficient design of the human-robot collaboration. Technology-oriented approaches are no longer enough in the Industry 4.0 era. This work proposes a set of methods to support manufacturing engineers in the human-oriented design process of integrated production systems to obtain satisfactory performance in the mass customization paradigm, without impacting the safety and health of workers. It founds the design criteria definition on five main pillars (safety, ergonomics, effectiveness, flexibility, and costs), favors the consideration of different design alternatives, and leads their selection. The dynamic impact of the design choices on the various elements of the system prevails over the static design constraints. The method has been experimented in collaboration with the major kitchen manufacturer in Italy, which introduced a collaborative robotics cell in the drawers' assembly line. It resulted in a more balanced production line (10% more), a verified risk minimization (RULA score reduced from 5 to 3 and OCRA score from 13.30 to 5.70), and a greater allocation of operators to high added value activities

    Head Impact Severity Measures for Small Social Robots Thrown During Meltdown in Autism

    Get PDF
    Social robots have gained a lot of attention recently as they have been reported to be effective in supporting therapeutic services for children with autism. However, children with autism may exhibit a multitude of challenging behaviors that could be harmful to themselves and to others around them. Furthermore, social robots are meant to be companions and to elicit certain social behaviors. Hence, the presence of a social robot during the occurrence of challenging behaviors might increase any potential harm. In this paper, we identified harmful scenarios that might emanate between a child and a social robot due to the manifestation of challenging behaviors. We then quantified the harm levels based on severity indices for one of the challenging behaviors (i.e. throwing of objects). Our results showed that the overall harm levels based on the selected severity indices are relatively low compared to their respective thresholds. However, our investigation of harm due to throwing of a small social robot to the head revealed that it could potentially cause tissue injuries, subconcussive or even concussive events in extreme cases. The existence of such behaviors must be accounted for and considered when developing interactive social robots to be deployed for children with autism.The work is supported by a research grant from Qatar University under the grant No. QUST-1-CENG-2018-7Scopu

    Collaborative robot control with hand gestures

    Get PDF
    Mestrado de dupla diplomação com a Université Libre de TunisThis thesis focuses on hand gesture recognition by proposing an architecture to control a collaborative robot in real-time vision based on hand detection, tracking, and gesture recognition for interaction with an application via hand gestures. The first stage of our system allows detecting and tracking a bar e hand in a cluttered background using skin detection and contour comparison. The second stage allows recognizing hand gestures using a Machine learning method algorithm. Finally an interface has been developed to control the robot over. Our hand gesture recognition system consists of two parts, in the first part for every frame captured from a camera we extract the keypoints for every training image using a machine learning algorithm, and we appoint the keypoints from every image into a keypoint map. This map is treated as an input for our processing algorithm which uses several methods to recognize the fingers in each hand. In the second part, we use a 3D camera with Infrared capabilities to get a 3D model of the hand to implement it in our system, after that we track the fingers in each hand and recognize them which made it possible to count the extended fingers and to distinguish each finger pattern. An interface to control the robot has been made that utilizes the previous steps that gives a real-time process and a dynamic 3D representation.Esta dissertação trata do reconhecimento de gestos realizados com a mão humana, propondo uma arquitetura para interagir com um robô colaborativo, baseado em visão computacional, rastreamento e reconhecimento de gestos. O primeiro estágio do sistema desenvolvido permite detectar e rastrear a presença de uma mão em um fundo desordenado usando detecção de pele e comparação de contornos. A segunda fase permite reconhecer os gestos das mãos usando um algoritmo do método de aprendizado de máquina. Finalmente, uma interface foi desenvolvida para interagir com robô. O sistema de reconhecimento de gestos manuais está dividido em duas partes. Na primeira parte, para cada quadro capturado de uma câmera, foi extraído os pontos-chave de cada imagem de treinamento usando um algoritmo de aprendizado de máquina e nomeamos os pontos-chave de cada imagem em um mapa de pontos-chave. Este mapa é tratado como uma entrada para o algoritmo de processamento que usa vários métodos para reconhecer os dedos em cada mão. Na segunda parte, foi utilizado uma câmera 3D com recursos de infravermelho para obter um modelo 3D da mão para implementá-lo em no sistema desenvolvido, e então, foi realizado os rastreio dos dedos de cada mão seguido pelo reconhecimento que possibilitou contabilizar os dedos estendidos e para distinguir cada padrão de dedo. Foi elaborado uma interface para interagir com o robô manipulador que utiliza as etapas anteriores que fornece um processo em tempo real e uma representação 3D dinâmica

    Legal framework for small autonomous agricultural robots

    Get PDF
    Legal structures may form barriers to, or enablers of, adoption of precision agriculture management with small autonomous agricultural robots. This article develops a conceptual regulatory framework for small autonomous agricultural robots, from a practical, self-contained engineering guide perspective, sufficient to get working research and commercial agricultural roboticists quickly and easily up and running within the law. The article examines the liability framework, or rather lack of it, for agricultural robotics in EU, and their transpositions to UK law, as a case study illustrating general international legal concepts and issues. It examines how the law may provide mitigating effects on the liability regime, and how contracts can be developed between agents within it to enable smooth operation. It covers other legal aspects of operation such as the use of shared communications resources and privacy in the reuse of robot-collected data. Where there are some grey areas in current law, it argues that new proposals could be developed to reform these to promote further innovation and investment in agricultural robots

    Proceedings of the Vision Zero Summit 2019 12–14 November 2019 Helsinki, Finland

    Get PDF
    The Vision Zero Summit was held on 12–14 November 2019 in Helsinki Finland, and organized by the Finnish Institute of Occupational Health, with the support of our partners. Vision Zero is a strategy and a holistic mindset. It is continuous improvement of safety, health, and wellbeing at work, not just a numerical goal. This summit focused on discussing different aspects of Vision Zero, taking the Vision Zero thinking and actions to the next level, and sharing best practices and lessons learned. One theme of the Summit was worded as Rethinking Vision Zero, which is a reminder that there are many perspectives to Vision Zero. Vision Zero Summit was one of the side events of Finland’s Presidency of the Council of the EU. One of the Vision Zero Summit’s goal was to provide new ideas and perspectives, as well as strengthen participants professional networks. This Proceedings publication is a compilation of the papers presented on 12–14 November 2019 in the Vision Zero Summit 2019 in Helsinki

    Human centric collaborative workplace: the human robot interaction system perspective

    Get PDF
    The implementation of smart technologies and physical collaboration with robots in manufacturing can provide competitive advantages in production, performance and quality, as well as improve working conditions for operators. Due to the rapid advancement of smart technologies and robot capabilities, operators face complex task processes, decline in competences due to robots overtaking tasks, and reduced learning opportunities, as the range of tasks that they are asked to perform is narrower. The Industry 5.0 framework introduced, among others, the human-centric workplace, promoting operators wellbeing and use of smart technologies and robots to support them. This new human centric framework enables operators to learn new skills and improve their competencies. However, the need to understand the effects of the workplace changes remain, especially in the case of human robot collaboration, due to the dynamic nature of human robot interaction. A literature review was performed, initially, to map the effects of workplace changes on operators and their capabilities. Operators need to perform tasks in a complex environment in collaboration with robots, receive information from sensors or other means (e.g. through augmented reality glasses) and decide whether to act upon them. Meanwhile, operators need to maintain their productivity and performance. This affects cognitive load and fatigue, which increases safety risks and probability of human-system error. A model for error probability was formulated and tested in collaborative scenarios, which regards the operators as natural systems in the workplace environment, taking into account their condition based on four macro states; behavioural, mental, physical and psychosocial. A scoping review was then performed to investigate the robot design features effects on operators in the human robot interaction system. Here, the outcomes of robot design features effects on operators were mapped and potential guidelines for design purposes were identified. The results of the scoping review showed that, apart from cognitive load, operators perception on robots reliability and their safety, along with comfort can influence team cohesion and quality in the human robot interaction system. From the findings of the reviews, an experimental study was designed with the support of the industrial partner. The main hypothesis was that cognitive load, due to collaboration, is correlated with quality of product, process and human work. In this experimental study, participants had to perform two tasks; a collaborative assembly and a secondary manual assembly. Perceived task complexity and cognitive load were measured through questionnaires, and quality was measured through errors participants made during the experiment. Evaluation results showed that while collaboration had positive influence in performing the tasks, cognitive load increased and the temporal factor was the main reason behind the issues participants faced, as it slowed task management and decision making of participants. Potential solutions were identified that can be applied to industrial settings, such as involving participants/operators in the task and workplace design phase, sufficient training with their robot co-worker to learn the task procedures and implement direct communication methods between operator and robot for efficient collaboration

    Human Machine Interaction

    Get PDF
    In this book, the reader will find a set of papers divided into two sections. The first section presents different proposals focused on the human-machine interaction development process. The second section is devoted to different aspects of interaction, with a special emphasis on the physical interaction
    • …
    corecore