838 research outputs found

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Barycentric Subspace Analysis on Manifolds

    Full text link
    This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA).Comment: Annals of Statistics, Institute of Mathematical Statistics, A Para\^itr

    Activity Identification and Local Linear Convergence of Forward--Backward-type methods

    Full text link
    In this paper, we consider a class of Forward--Backward (FB) splitting methods that includes several variants (e.g. inertial schemes, FISTA) for minimizing the sum of two proper convex and lower semi-continuous functions, one of which has a Lipschitz continuous gradient, and the other is partly smooth relatively to a smooth active manifold M\mathcal{M}. We propose a unified framework, under which we show that, this class of FB-type algorithms (i) correctly identifies the active manifolds in a finite number of iterations (finite activity identification), and (ii) then enters a local linear convergence regime, which we characterize precisely in terms of the structure of the underlying active manifolds. For simpler problems involving polyhedral functions, we show finite termination. We also establish and explain why FISTA (with convergent sequences) locally oscillates and can be slower than FB. These results may have numerous applications including in signal/image processing, sparse recovery and machine learning. Indeed, the obtained results explain the typical behaviour that has been observed numerically for many problems in these fields such as the Lasso, the group Lasso, the fused Lasso and the nuclear norm regularization to name only a few.Comment: Full length version of the previous short on

    Gradient Young measures generated by quasiconformal maps in the plane

    Full text link
    In this contribution, we completely and explicitly characterize Young measures generated by gradients of quasiconformal maps in the plane. By doing so, we generalize the results of Astala and Faraco \cite{AstalaFaraco} who provided a similar result for quasiregular maps and Bene\v{s}ov\'a and Kru\v{z}\'ik \cite{bbmk2013} who characterized Young measures generated by gradients of bi-Lipschitz maps. Our results are motivated by non-linear elasticity where injectivity of the functions in the generating sequence is essential in order to assure non-interpenetration of matter

    A simple proof of the invariant torus theorem

    Get PDF
    We give a simple proof of Kolmogorov's theorem on the persistence of a quasiperiodic invariant torus in Hamiltonian systems. The theorem is first reduced to a well-posed inversion problem (Herman's normal form) by switching the frequency obstruction from one side of the conjugacy to another. Then the proof consists in applying a simple, well suited, inverse function theorem in the analytic category, which itself relies on the Newton algorithm and on interpolation inequalities. A comparison with other proofs is included in appendix
    • …
    corecore