719,691 research outputs found

    Multi-point Injection

    Get PDF
    Cílem této práce je popsat a přiblížit funkci vícebodového vstřikování paliva u zážehových spalovacích motorů, vytvořit přehled jednotlivých komponentů vstřikovacích systemů a popsat jejich funkci a porovnat vstřikovací systémy s ostatními druhy palivových soustav. V závěru budou uvedeny vývojové tendence spalovacích systémů.The main objective of this Bachelor degree thesis is to describe and to bring closer the function of the multiple fuel injection system (nebo the function of fuel injections with multiple sets) in spark-ignition combustion engines, as well as to create a summary of individual components in fuel injection frameworks together with describing their functions and comparing them with other alternatives in fuel systems. In the conclusion, an elaboration on development trends in combustion engines will be provided.

    Localized Support for Injection Point Election in Hybrid Networks

    Get PDF
    Ad-hoc networks, a promising trend in wireless technology, fail to work properly in a global setting. In most cases, self-organization and cost-free local communication cannot compensate the need for being connected, gathering urgent information just-in-time. Equipping mobile devices additionally with GSM or UMTS adapters in order to communicate with arbitrary remote devices or even a fixed network infrastructure provides an opportunity. Devices that operate as intermediate nodes between the ad-hoc network and a reliable backbone network are potential injection points. They allow disseminating received information within the local neighborhood. The effectiveness of different devices to serve as injection point differs substantially. For practical reasons the determination of injection points should be done locally, within the ad-hoc network partitions. We analyze different localized algorithms using at most 2-hop neighboring information. Results show that devices selected this way spread information more efficiently through the ad-hoc network. Our results can also be applied in order to support the election process for clusterheads in the field of clustering mechanisms.Comment: The Sixth International Conference on Networking (ICN 2007

    Vortex shedding in a two-dimensional diffuser: theory and simulation of separation control by periodic mass injection

    Get PDF
    We develop a reduced-order model for large-scale unsteadiness (vortex shedding) in a two-dimensional diffuser and use the model to show how periodic mass injection near the separation point reduces stagnation pressure loss. The model estimates the characteristic frequency of vortex shedding and stagnation pressure loss by accounting for the accumulated circulation due to the vorticity flux into the separated region. The stagnation pressure loss consists of two parts: a steady part associated with the time-averaged static pressure distribution on the wall, and an unsteady part caused by vortex shedding. To validate the model, we perform numerical simulations of compressible unsteady laminar diffuser flows in two dimensions. The model and simulation show good agreement as we vary the Mach number and the area ratio of the diffuser. To investigate the effects of periodic mass injection near the separation point, we also perform simulations over a range of the injection frequencies. Periodic mass injection causes vortices to be pinched off with a smaller size as observed in experiments. Consequently, their convective velocity is increased, absorption of circulation from the wall is enhanced, and the reattached point is shifted upstream. Thus, in accordance with the model, the stagnation pressure loss, particularly the unsteady part, is substantially reduced even though the separation point is nearly unchanged. This study helps explain experimental results of separation control using unsteady mass injection in diffusers and on airfoils

    Study of fluorine behaviour in silicon by selective point defect injection

    No full text
    This letter reports a point defect injection study of 185 keV 2.3x1015cm?2 fluorine implanted silicon. After an inert anneal at 1000°C, fluorine peaks are seen at depths of 0.3Rp and Rp and a shoulder between 0.5–0.7Rp. The shallow peak (at 0.3Rp) is significantly smaller under interstitial injection than under both inert and vacancy injection conditions. For a longer anneal under interstitial injection, both the shallow peak and the shoulder are eliminated. These results support earlier work suggesting that the shallow fluorine peak is due to vacancy-fluorine clusters which are responsible for suppression of boron thermal diffusion in silicon. The elimination of the shallow fluorine peak and the shoulder is explained by the annihilation of vacancies in the clusters with injected interstitials

    Interaction between Injection Points during Hydraulic Fracturing

    Full text link
    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.Comment: Submitte

    Influence of several factors on ignition lag in a compression-ignition engine

    Get PDF
    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag
    • …
    corecore