24 research outputs found

    Piezoelectric inkjet coating of injection moulded, reservoir-tipped microneedle arrays for transdermal delivery

    Get PDF
    Coated microneedles have significant potential for use in transdermal delivery applications. In this paper, we describe the fabrication of microneedle master templates using microstereolithography techniques and subsequently use a commercial injection moulding process to replicate these microneedles in biocompatible cyclic olefin polymer (COP) materials. Notably, the 475 ÎĽm-tall needle designs feature a shallow pit or reservoir at the tip, thereby providing both a target and holder for incoming droplets that are deposited using a piezoelectric inkjet printer. Using this design, no tilting or rotation of the needle array is required during the filling process. In the preliminary tests reported here, the reservoir is filled with a FITC-labelled dye that acts as a model drug, and ex vivo skin tests are used to verify skin penetration, the transfer of this model drug to the skin and to measure the reliability of the needles themselves. To our knowledge, this is the first time that such an inkjet-filled, reservoir-tipped microneedle has been demonstrated

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Extracellular ph monitoring for use in closed-loop vagus nerve stimulation

    Get PDF
    Objective. Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices

    Extracellular pH monitoring for use in closed-loop vagus nerve stimulation

    Get PDF
    Objective: Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices

    Development of on-farm diagnostic devices

    Get PDF
    The global population, currently 7.7 billion, is expected to grow to 9.7 billion by 2050. This is expected to lead to a 70% increase in demand for animal-based protein. Irish beef and dairy products account for over 50% of our agricultural output and DAFM’s Food Wise 2025 strategy aims to position Ireland as a world leader in sustainable agri-food production. However, the high percentage of livestock that are lost due to infectious diseases (20%), poses a challenge to achieving this sustainability, in addition to more sustainable use of antimicrobials, smarter livestock diagnostics and treatments are therefore required. The goal of this thesis was to develop a low-cost disposable biosensor that would permit point-of-care (POC) detection of diseases in bovines, through cost-effective, scalable microfabrication techniques. Such devices could enable real-time determination of the health status of animals on farm and contribute to more informed therapeutic interventions. Electrochemistry presents a viable option for POC devices in this regard and allows easy integration with portable electronics. Electrochemical Impedance Spectroscopy (EIS) is a surface sensitive technique that measures the resistive and capacitive behaviour of an electrochemical system. It lends itself to serological immunosensor development as it allows label-free detection. For the purposes of this research, silicon devices were fabricated with six microband working electrodes, gold counter, and platinum pseudo-reference electrodes. The microband working electrodes were modified with a biocompatible co-polymer. This co-polymer supported the cross-linking of a bioreceptor (e.g., anti-bovine IgG) to electrode surface, which selectively bound to the target biomolecule (bovine IgG) in serum. This EIS device could distinguish between seronegative and seropositive samples in 15 minutes making it suitable for POC applications. Additionally, the presence of six working electrodes allowed for testing of multiple samples at a time. Often, however, only a single test is required. As such, silicon presents an expensive option for disposable sensors. Hence, polymer replication methods were also investigated in this thesis. This process allowed a single silicon wafer to be repeatedly used to produce polymer structures. A microneedle format was chosen to eliminate the need for taking samples on-farm and provide a pain-free method of in vivo measurements in interstitial fluid in interstitial fluid. The fabrication method used a double-sided micro-moulding process to move towards mass manufacturing. COMSOL simulations were performed to explore the active layer on the microneedle tip surface, ensuring no diffusional overlap between electrodes and providing the most effective tip design. The microneedle structures also presented the opportunity for novel fabrication of nanoring arrays, by removing part of the protruding structure and exposing underlying nanorings. These have the potential to be highly sensitive electrochemical devices due to enhanced mass transport and high current densities, while maintaining the scalable cost-effective fabrication process of the microneedles. Devices produced steady-state CVs in a known redox molecule, with currents in the nA range

    Minimally invasive clinical monitoring and data transference in cardiac patients

    Get PDF
    'Wet' electrodes used in electrocardiography (ECG), are applied to the surface of the skin to record cardiac activity. Over time, water-based electrolytic gels between the electrodes and skin dehydrate, reducing signal quality. Microneedle-electrodes negate the need for conductive gels and potentially improve signal fidelity by circumventing the stratum corneum and contacting the underlying conductive epidermal layers. This thesis aimed to assess the wearability and functionality of microneedle-electrodes in cardiac signal acquisition. Epoxy, 500μm-length microneedles were applied to excised skin models to assess insertion performance. Increasing downward application force increased microneedle penetration efficiency from 79%±8.20 (5N) to 87%±13.32 (15N). The microneedle application technique also had an impact on penetration efficiency, with impact insertion (93%±5.75) proving more effective than manual downward force (71%±22.01). Metallised versions of the epoxy microneedles were integrated into a commercial electrode and compared to conventional wet electrodes in human volunteers. Wet electrodes recorded higher quality signals than microneedle-electrodes in healthy human participants (1.6dB difference between the electrode types). This clinical data informed the development of an in vitro laboratory skin model to assess the influence of microneedle-electrode parameters on a simulated ECG signal. Increasing microneedle length from 500μm (25.2dB±3.25) to 600μm (24.3dB±2.31) did not result in a sustained improvement in signal quality (p>0.05). Bespoke second-generation microneedle-electrodes were manufactured allowing an improved signal quality to be maintained over the recording period (17.3dB±2.11 compared to 15.0dB±1.97 for wet electrodes; p>0.05) in the laboratory model. Human participant studies assessed their wearability and functionality. At rest, the metallised epoxy (23.2dB±5.79) and bespoke (22.5dB±7.57) microneedle-electrode performance was comparable to wet electrodes (24.9dB±6.44) (p>0.05). Under active conditions, the signal-to-noise ratio declined for all electrodes and ECG traces highlighted increased motion artifacts. Participants preferred wet electrodes and highlighted seven key wearability themes. Further optimisation of microneedle-electrodes for ECG monitoring is therefore, warranted
    corecore