7,469 research outputs found

    Automata Minimization: a Functorial Approach

    Full text link
    In this paper we regard languages and their acceptors - such as deterministic or weighted automata, transducers, or monoids - as functors from input categories that specify the type of the languages and of the machines to categories that specify the type of outputs. Our results are as follows: A) We provide sufficient conditions on the output category so that minimization of the corresponding automata is guaranteed. B) We show how to lift adjunctions between the categories for output values to adjunctions between categories of automata. C) We show how this framework can be instantiated to unify several phenomena in automata theory, starting with determinization, minimization and syntactic algebras. We provide explanations of Choffrut's minimization algorithm for subsequential transducers and of Brzozowski's minimization algorithm in this setting.Comment: journal version of the CALCO 2017 paper arXiv:1711.0306

    High-performance control of dual-inertia servo-drive systems using low-cost integrated SAW torque transducers

    Get PDF
    Abstract—This paper provides a systematic comparative study of compensation schemes for the coordinated motion control of two-inertia mechanical systems. Specifically, classical proportional–integral (PI), proportional–integral–derivative (PID), and resonance ratio control (RRC) are considered, with an enhanced structure based on RRC, termed RRC+, being proposed. Motor-side and load-side dynamics for each control structure are identified, with the “integral of time multiplied by absolute error” performance index being employed as a benchmark metric. PID and RRC control schemes are shown to be identical from a closed-loop perspective, albeit employing different feedback sensing mechanisms. A qualitative study of the practical effects of employing each methodology shows that RRC-type structures provide preferred solutions if low-cost high-performance torque transducers can be employed, for instance, those based on surface acoustic wave tecnologies. Moreover, the extra degree of freedom afforded by both PID and RRC, as compared with the basic PI, is shown to be sufficient to simultaneously induce optimal closed-loop performance and independent selection of virtual inertia ratio. Furthermore, the proposed RRC+ scheme is subsequently shown to additionally facilitate independent assignment of closed-loop bandwidth. Summary attributes of the investigation are validated by both simulation studies and by realization of the methodologies for control of a custom-designed two-inertia system

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts

    Stability of Supersonic Flow with Injection

    Get PDF
    Gas injection into supersonic flow past a 5° half-angle cone is studied with three injected gases: helium, nitrogen, and RC318. Experiments are performed in a Mach 4 Ludwieg tube with nitrogen as the free stream gas. The injector section is shaped to admit a “tuned” injection rate where the displacement created by injection counteracts the effects created by the injector geometry. A high-speed schlieren imaging system with a framing rate of 290 kHz is used to study the instability in the region of flow downstream of injection, referred to as the injection layer. Measurements of wavelength, convective speed, and frequency of the instability waves were made. The stability characteristics of the injection layer are found to be very similar to those of a shear layer. The findings of this work suggest that shear layer modes should be a primary concern for future stability analyses of supersonic flow with injection

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Stability of Supersonic Flow with Injection

    Get PDF
    Gas injection into supersonic flow past a 5° half-angle cone is studied with three injected gases: helium, nitrogen, and RC318. Experiments are performed in a Mach 4 Ludwieg tube with nitrogen as the free stream gas. The injector section is shaped to admit a “tuned” injection rate where the displacement created by injection counteracts the effects created by the injector geometry. A high-speed schlieren imaging system with a framing rate of 290 kHz is used to study the instability in the region of flow downstream of injection, referred to as the injection layer. Measurements of wavelength, convective speed, and frequency of the instability waves were made. The stability characteristics of the injection layer are found to be very similar to those of a shear layer. The findings of this work suggest that shear layer modes should be a primary concern for future stability analyses of supersonic flow with injection

    Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds

    Get PDF
    The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code
    corecore