428 research outputs found

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    Introducing Astrocytes on a Neuromorphic Processor: Synchronization, Local Plasticity and Edge of Chaos

    Full text link
    While there is still a lot to learn about astrocytes and their neuromodulatory role in the spatial and temporal integration of neuronal activity, their introduction to neuromorphic hardware is timely, facilitating their computational exploration in basic science questions as well as their exploitation in real-world applications. Here, we present an astrocytic module that enables the development of a spiking Neuronal-Astrocytic Network (SNAN) into Intel's Loihi neuromorphic chip. The basis of the Loihi module is an end-to-end biophysically plausible compartmental model of an astrocyte that simulates the intracellular activity in response to the synaptic activity in space and time. To demonstrate the functional role of astrocytes in SNAN, we describe how an astrocyte may sense and induce activity-dependent neuronal synchronization, switch on and off spike-time-dependent plasticity (STDP) to introduce single-shot learning, and monitor the transition between ordered and chaotic activity at the synaptic space. Our module may serve as an extension for neuromorphic hardware, by either replicating or exploring the distinct computational roles that astrocytes have in forming biological intelligence.Comment: 9 pages, 7 figure

    A numerical model for Hodgkin-Huxley neural stimulus reconstruction

    Get PDF
    The information about a neural activity is encoded in a neural response and usually the underlying stimulus that triggers the activity is unknown. This paper presents a numerical solution to reconstruct stimuli from Hodgkin-Huxley neural responses while retrieving the neural dynamics. The stimulus is reconstructed by first retrieving the maximal conductances of the ion channels and then solving the Hodgkin-Huxley equations for the stimulus. The results show that the reconstructed stimulus is a good approximation of the original stimulus, while the retrieved the neural dynamics, which represent the voltage-dependent changes in the ion channels, help to understand the changes in neural biochemistry. As high non-linearity of neural dynamics renders analytical inversion of a neuron an arduous task, a numerical approach provides a local solution to the problem of stimulus reconstruction and neural dynamics retrieval

    Regulation of Irregular Neuronal Firing by Autaptic Transmission

    Get PDF
    The importance of self-feedback autaptic transmission in modulating spike-time irregularity is still poorly understood. By using a biophysical model that incorporates autaptic coupling, we here show that self-innervation of neurons participates in the modulation of irregular neuronal firing, primarily by regulating the occurrence frequency of burst firing. In particular, we find that both excitatory and electrical autapses increase the occurrence of burst firing, thus reducing neuronal firing regularity. In contrast, inhibitory autapses suppress burst firing and therefore tend to improve the regularity of neuronal firing. Importantly, we show that these findings are independent of the firing properties of individual neurons, and as such can be observed for neurons operating in different modes. Our results provide an insightful mechanistic understanding of how different types of autapses shape irregular firing at the single-neuron level, and they highlight the functional importance of autaptic self-innervation in taming and modulating neurodynamics.Comment: 27 pages, 8 figure

    Stable Propagation of a Burst Through a One-Dimensional Homogeneous Excitatory Chain Model of Songbird Nucleus HVC

    Full text link
    We demonstrate numerically that a brief burst consisting of two to six spikes can propagate in a stable manner through a one-dimensional homogeneous feedforward chain of non-bursting neurons with excitatory synaptic connections. Our results are obtained for two kinds of neuronal models, leaky integrate-and-fire (LIF) neurons and Hodgkin-Huxley (HH) neurons with five conductances. Over a range of parameters such as the maximum synaptic conductance, both kinds of chains are found to have multiple attractors of propagating bursts, with each attractor being distinguished by the number of spikes and total duration of the propagating burst. These results make plausible the hypothesis that sparse precisely-timed sequential bursts observed in projection neurons of nucleus HVC of a singing zebra finch are intrinsic and causally related.Comment: 13 pages, 6 figure

    An associative memory of Hodgkin-Huxley neuron networks with Willshaw-type synaptic couplings

    Full text link
    An associative memory has been discussed of neural networks consisting of spiking N (=100) Hodgkin-Huxley (HH) neurons with time-delayed couplings, which memorize P patterns in their synaptic weights. In addition to excitatory synapses whose strengths are modified after the Willshaw-type learning rule with the 0/1 code for quiescent/active states, the network includes uniform inhibitory synapses which are introduced to reduce cross-talk noises. Our simulations of the HH neuron network for the noise-free state have shown to yield a fairly good performance with the storage capacity of αc=Pmax/N∼0.4−2.4\alpha_c = P_{\rm max}/N \sim 0.4 - 2.4 for the low neuron activity of f∼0.04−0.10f \sim 0.04-0.10. This storage capacity of our temporal-code network is comparable to that of the rate-code model with the Willshaw-type synapses. Our HH neuron network is realized not to be vulnerable to the distribution of time delays in couplings. The variability of interspace interval (ISI) of output spike trains in the process of retrieving stored patterns is also discussed.Comment: 15 pages, 3 figures, changed Titl

    Associative memory by virtual oscillator network based on single spin-torque oscillator

    Full text link
    A coupled oscillator network may be able to perform an energy-efficient associative memory operation. However, its realization has been difficult because inhomogeneities unavoidably arise among the oscillators during fabrication and lead to an unreliable operation. This issue could be resolved if the oscillator network were able to be formed from a single oscillator. Here, we performed numerical simulations and theoretical analyses on an associative memory operation that uses a virtual oscillator network based on a spin-torque oscillator. The virtual network combines the concept of coupled oscillators with that of feedforward neural networks. Numerical experiments demonstrate successful associations of 6060-pixel patterns with various memorized patterns. Moreover, the origin of the associative memory is shown to be forced synchronization driven by feedforward input, where phase differences among oscillators are fixed and correspond to the colors of the pixels in the pattern.Comment: 15 pages, 4 figure

    Time series modeling and synchronization using neural networks

    Get PDF
    In the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponents. In this paper we analyze further the dynamical properties of neural networks when comparted with chaotic systems. In particular, we show that the possibility of synchronizing chaotic systems gives a natural criterion for determining similar dynamical behavior between these systems and neural approximate models. In particular we show that a neural model obtained from an experimental scalar laser-intensity time series can be synchronized to the time series, indicating that it captures the dynamical behavior of the system underlying the data.I Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time - series prediction

    Get PDF
    Collaboration enables weak species to survive in an environment where different species compete for limited resources. Cooperative coevolution (CC) is a nature-inspired optimization method that divides a problem into subcomponents and evolves them while genetically isolating them. Problem decomposition is an important aspect in using CC for neuroevolution. CC employs different problem decomposition methods to decompose the neural network training problem into subcomponents. Different problem decomposition methods have features that are helpful at different stages in the evolutionary process. Adaptation, collaboration, and competition are needed for CC, as multiple subpopulations are used to represent the problem. It is important to add collaboration and competition in CC. This paper presents a competitive CC method for training recurrent neural networks for chaotic time-series prediction. Two different instances of the competitive method are proposed that employs different problem decomposition methods to enforce island-based competition. The results show improvement in the performance of the proposed methods in most cases when compared with standalone CC and other methods from the literature
    • …
    corecore