62 research outputs found

    Analyzing User Behavior in Collaborative Environments

    Get PDF
    Discrete sequences are the building blocks for many real-world problems in domains including genomics, e-commerce, and social sciences. While there are machine learning methods to classify and cluster sequences, they fail to explain what makes groups of sequences distinguishable. Although in some cases having a black box model is sufficient, there is a need for increased explainability in research areas focused on human behaviors. For example, psychologists are less interested in having a model that predicts human behavior with high accuracy and more concerned with identifying differences between actions that lead to divergent human behavior. This dissertation presents techniques for understanding differences between classes of discrete sequences. We leveraged our developed approaches to study two online collaborative environments: GitHub, a software development platform, and Minecraft, a multiplayer online game. The first approach measures the differences between groups of sequences by comparing k-gram representations of sequences using the silhouette score and characterizing the differences by analyzing the distance matrix of subsequences. The second approach discovers subsequences that are significantly more similar to one set of sequences vs. other sets. This approach, which is called contrast motif discovery, first finds a set of motifs for each group of sequences and then refines them to include the motifs that distinguish that group from other groups of sequences. Compared to existing methods, our technique is scalable and capable of handling long event sequences. Our first case study is GitHub. GitHub is a social coding platform that facilitates distributed, asynchronous collaborations in open source software development. It has an open API to collect metadata about users, repositories, and the activities of users on repositories. To study the dynamics of teams on GitHub, we focused on discrete event sequences that are generated when GitHub users perform actions on this platform. Specifically, we studied the differences that automated accounts (aka bots) make on software development processes and outcomes. We trained black box supervised learning methods to classify sequences of GitHub teams and then utilized our sequence analysis techniques to measure and characterize differences between event sequences of teams with bots and teams without bots. Teams with bots have relatively distinct event sequences from teams without bots in terms of the existence and frequency of short subsequences. Moreover, teams with bots have more novel and less repetitive sequences compared to teams with no bots. In addition, we discovered contrast motifs for human-bot and human-only teams. Our analysis of contrast motifs shows that in human-bot teams, discussions are scattered throughout other activities while in human-only teams discussions tend to cluster together. For our second case study, we applied our sequence mining approaches to analyze player behavior in Minecraft, a multiplayer online game that supports many forms of player collaboration. As a sandbox game, it provides players with a large amount of flexibility in deciding how to complete tasks; this lack of goal-orientation makes the problem of analyzing Minecraft event sequences more challenging than event sequences from more structured games. Using our approaches, we were able to measure and characterize differences between low-level sequences of high-level actions and despite variability in how different players accomplished the same tasks, we discovered contrast motifs for many player actions. Finally, we explored how the level of player collaboration affects the contrast motifs

    Comparing AI Archetypes and Hybrids Using Blackjack

    Get PDF
    The discipline of artificial intelligence (AI) is a diverse field, with a vast variety of philosophies and implementations to consider. This work attempts to compare several of these paradigms as well as their variations and hybrids, using the card game of blackjack as the field of competition. This is done with an automated blackjack emulator, written in Java, which accepts computer-controlled players of various AI philosophies and their variants, training them and finally pitting them against each other in a series of tournaments with customizable rule sets. In order to avoid bias towards any particular implementation, the system treats each group as a team, allowing each team to run optimally and handle their own evolution. The primary AI paradigms examined in this work are rule-based AI and genetic learning, drawing from the philosophies of fuzzy logic and intelligent agents. The rule-based AI teams apply various commonly used algorithms for real-world blackjack, ranging from the basic rules of a dealer to the situational rule of thumb formula suggested to amateurs. The blackjack options of hit, stand, surrender, and double down are supported, but advanced options such as hand splitting and card counting are not examined. Various tests exploring possible configurations of genetic learning systems were devised, implemented, and analyzed. Future work would expand the variety and complexity of the teams, as well as implementing advanced game features

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    2019 IMSAloquium: Student Inquiry and Research Program and IMSA Internship Program

    Get PDF
    Welcome to IMSAloquium 2019! This is IMSA’s 32nd year of leading in educational innovation, the 31st year of the IMSA Student Inquiry and Research (SIR) Program, and the first year of the newly imagined IMSA Internship Program.https://digitalcommons.imsa.edu/archives_sir/1029/thumbnail.jp

    Analysis and design of individual information systems to support health behavior change

    Get PDF
    As a wide-ranging socio-technical transformation, the digitalization has significantly influenced the world, bringing opportunities and challenges to our lives. Despite numerous benefits like the possibility to stay connected with people around the world, the increasing dispersion and use of digital technologies and media (DTM) pose risks to individuals’ well-being and health. Rising demands emerging from the digital world have been linked to digital stress, that is, stress directly or indirectly resulting from DTM (Ayyagari et al. 2011; Ragu-Nathan et al. 2008; Tarafdar et al. 2019; Weil and Rosen 1997), potentially intensifying individuals’ overall exposure to stress. Individuals experiencing this adverse consequence of digitalization are at elevated risk of developing severe mental health impairments (Alhassan et al. 2018; Haidt and Allen 2020; Scott et al. 2017), which is why various scholars emphasize that research should place a stronger focus on analyzing and shaping the role of the individual in a digital world, pursuing instrumental as well as humanistic objectives (Ameen et al. 2021; Baskerville 2011b). Information Systems (IS) research has long placed emphasis on the use of information and communication technology (ICT) in organizations, viewing an information system as the socio-technical system that emerges from individuals’ interaction with DTM in organizations. However, socio-technical information systems, as the essence of the IS discipline (Lee 2004; Sarker et al. 2019), are also present in different social contexts from private life. Acknowledging the increasing private use of DTM, such as smartphones and social networks, IS scholars have recently intensified their efforts to understand the human factor of IS (Avison and Fitzgerald 1991; Turel et al. 2021). A framework recently proposed by Matt et al. (2019) suggests three research angles: analyzing individuals’ behavior associated with their DTM use, analyzing what consequences arise from their DTM use behavior, and designing new technologies that promote positive or mitigate negative effects of individuals’ DTM use. Various recent studies suggest that individuals’ behavior seems to be an important lever influencing the outcomes of their DTM use (Salo et al. 2017; Salo et al. 2020; Weinstein et al. 2016). Therefore, this dissertation aims to contribute to IS research targeting the facilitation of a healthy DTM use behavior. It explores the use behavior, consequences, and design of DTM for individuals' use with the objective to deliver humanistic value by increasing individuals' health through supporting a behavior change related to their DTM use. The dissertation combines behavioral science and design science perspectives and applies pluralistic methodological approaches from qualitative (e.g., interviews, prototyping) and quantitative research (e.g., survey research, field studies), including mixed-methods approaches mixing both. Following the framework from Matt et al. (2019), the dissertation takes three perspectives therein: analyzing individuals’ behavior, analyzing individuals’ responses to consequences of DTM use, and designing information systems assisting DTM users. First, the dissertation presents new descriptive knowledge on individuals’ behavior related to their use of DTM. Specifically, it investigates how individuals behave when interacting with DTM, why they behave the way they do, and how their behavior can be influenced. Today, a variety of digital workplace technologies offer employees different ways of pursuing their goals or performing their tasks (Köffer 2015). As a result, individuals exhibit different behaviors when interacting with these technologies. The dissertation analyzes what interactional roles DTM users can take at the digital workplace and what may influence their behavior. It uses a mixed-methods approach and combines a quantitative study building on trace data from a popular digital workplace suite and qualitative interviews with users of this digital workplace suite. The empirical analysis yields eight user roles that advance the understanding of users’ behavior at the digital workplace and first insights into what factors may influence this behavior. A second study adds another perspective and investigates how habitual behavior can be changed by means of DTM design elements. Real-time feedback has been discussed as a promising way to do so (Schibuola et al. 2016; Weinmann et al. 2016). In a field experiment, employees working at the digital workplace are provided with an external display that presents real-time feedback on their office’s indoor environmental quality. The experiment examines if and to what extent the feedback influences their ventilation behavior to understand the effect of feedback as a means of influencing individuals’ behavior. The results suggest that real-time feedback can effectively alter individuals’ behavior, yet the feedback’s effectiveness reduces over time, possibly as a result of habituation to the feedback. Second, the dissertation presents new descriptive and prescriptive knowledge on individuals’ ways to mitigate adverse consequences arising from the digitalization of individuals. A frequently discussed consequence that digitalization has on individuals is digital stress. Although research efforts strive to determine what measures individuals can take to effectively cope with digital stress (Salo et al. 2017; Salo et al. 2020; Weinert 2018), further understanding of individuals’ coping behavior is needed (Weinert 2018). A group at high risk of suffering from the adverse effects of digital stress is adolescents because they grow up using DTM daily and are still developing their identity, acquiring mental strength, and adopting essential social skills. To facilitate a healthy DTM use, the dissertation explores what strategies adolescents use to cope with the demands of their DTM use. Combining a qualitative and a quantitative study, it presents 30 coping responses used by adolescents, develops five factors underlying adolescents’ activation of coping responses, and identifies gender- and age-related differences in their coping behavior. Third, the dissertation presents new prescriptive knowledge on the design of individual information systems supporting individuals in understanding and mitigating their perceived stress. Facilitated by the sensing capabilities of modern mobile devices, it explores the design and development of mobile systems that assess stress and support individuals in coping with stress by initiating a change of stress-related behavior. Since there is currently limited understanding of how to develop such systems, this dissertation explores various facets of their design and development. As a first step, it presents the development of a prototype aiming for life-integrated stress assessment, that is, the mobile sensor-based assessment of an individual’s stress without interfering with their daily routines. Data collected with the prototype yields a stress model relating sensor data to individuals’ perception of stress. To deliver a more generalized perspective on mobile stress assessment, the dissertation further presents a literature- and experience-based design theory comprising a design blueprint, design requirements, design principles, design features, and a discussion of potentially required trade-offs. Mobile stress assessment may be used for the development of mobile coping assistants. Aiming to assist individuals in effectively coping with stress and preventing future stress, a mobile coping assistant should recommend adequate coping strategies to the stressed individual in real-time or execute targeted actions within a defined scope of action automatically. While the implementation of a mobile coping assistant is yet up to future research, the dissertation presents an abstract design and algorithm for selecting appropriate coping strategies. To sum up, this dissertation contributes new knowledge on the digitalization of individuals to the IS knowledge bases, expanding both descriptive and prescriptive knowledge. Through the combination of diverse methodological approaches, it delivers knowledge on individuals’ behavior when using DTM, on the mitigation of consequences that may arise from individuals’ use of DTM, and on the design of individual information systems with the goal of facilitating a behavior change, specifically, regarding individuals’ coping with stress. Overall, the research contained in this dissertation may promote the development of digital assistants that support individuals’ in adopting a healthy DTM use behavior and thereby contribute to shaping a socio-technical environment that creates more benefit than harm for all individuals

    Deep Reinforcement Learning Approaches for Technology Enhanced Learning

    Get PDF
    Artificial Intelligence (AI) has advanced significantly in recent years, transforming various industries and domains. Its ability to extract patterns and insights from large volumes of data has revolutionised areas such as image recognition, natural language processing, and autonomous systems. As AI systems become increasingly integrated into daily human life, there is a growing need for meaningful collaboration and mutual engagement between humans and AI, known as Human-AI Collaboration. This collaboration involves combining AI with human workflows to achieve shared objectives. In the current educational landscape, the integration of AI methods in Technology Enhanced Learning (TEL) has become crucial for providing high-quality education and facilitating lifelong learning. Human-AI Collaboration also plays a vital role in the field of Technology Enhanced Learning (TEL), particularly in Intelligent Tutoring Systems (ITS). The COVID-19 pandemic has further emphasised the need for effective educational technologies to support remote learning and bridge the gap between traditional classrooms and online platforms. To maximise the performance of ITS while minimising the input and interaction required from students, it is essential to design collaborative systems that effectively leverage the capabilities of AI and foster effective collaboration between students and ITS. However, there are several challenges that need to be addressed in this context. One challenge is the lack of clear guidance on designing and building user-friendly systems that facilitate collaboration between humans and AI. This challenge is relevant not only to education researchers but also to Human-Computer Interaction (HCI) researchers and developers. Another challenge is the scarcity of interaction data in the early stages of ITS development, which hampers the accurate modelling of students' knowledge states and learning trajectories, known as the cold start problem. Moreover, the effectiveness of Intelligent Tutoring Systems (ITS) in delivering personalised instruction is hindered by the limitations of existing Knowledge Tracing (KT) models, which often struggle to provide accurate predictions. Therefore, addressing these challenges is crucial for enhancing the collaborative process between humans and AI in the development of ITS. This thesis aims to address these challenges and improve the collaborative process between students and ITS in TEL. It proposes innovative approaches to generate simulated student behavioural data and enhance the performance of KT models. The thesis starts with a comprehensive survey of human-AI collaborative systems, identifying key challenges and opportunities. It then presents a structured framework for the student-ITS collaborative process, providing insights into designing user-friendly and efficient systems. To overcome the challenge of data scarcity in ITS development, the thesis proposes two student modelling approaches: Sim-GAIL and SimStu. SimStu leverages a deep learning method, the Decision Transformer, to simulate student interactions and enhance ITS training. Sim-GAIL utilises a reinforcement learning method, Generative Adversarial Imitation Learning (GAIL), to generate high-fidelity and diverse simulated student behavioural data, addressing the cold start problem in ITS training. Furthermore, the thesis focuses on improving the performance of KT models. It introduces the MLFBKT model, which integrates multiple features and mines latent relations in student interaction data, aiming to improve the accuracy and efficiency of KT models. Additionally, the thesis proposes the LBKT model, which combines the strengths of the BERT model and LSTM to process long sequence data in KT models effectively. Overall, this thesis contributes to the field of Human-AI collaboration in TEL by addressing key challenges and proposing innovative approaches to enhance ITS training and KT model performance. The findings have the potential to improve the learning experiences and outcomes of students in educational settings

    Interorganizational Information Systems: Systematic Literature Mapping Protocol

    Get PDF
    Organizations increasingly need to establish partnerships with other organizations to face environment changes and remain competitive. This interorganizational relationship allows organizations to share resources and collaborate to handle business opportunities better. This technical report present the protocol of the systematic mapping performed to understand what is an IOIS and how these systems support interorganizational relationships
    • …
    corecore