1,835 research outputs found

    A new kernel-based approach for overparameterized Hammerstein system identification

    Full text link
    In this paper we propose a new identification scheme for Hammerstein systems, which are dynamic systems consisting of a static nonlinearity and a linear time-invariant dynamic system in cascade. We assume that the nonlinear function can be described as a linear combination of pp basis functions. We reconstruct the pp coefficients of the nonlinearity together with the first nn samples of the impulse response of the linear system by estimating an npnp-dimensional overparameterized vector, which contains all the combinations of the unknown variables. To avoid high variance in these estimates, we adopt a regularized kernel-based approach and, in particular, we introduce a new kernel tailored for Hammerstein system identification. We show that the resulting scheme provides an estimate of the overparameterized vector that can be uniquely decomposed as the combination of an impulse response and pp coefficients of the static nonlinearity. We also show, through several numerical experiments, that the proposed method compares very favorably with two standard methods for Hammerstein system identification.Comment: 17 pages, submitted to IEEE Conference on Decision and Control 201

    From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples

    Full text link
    Linear parameter-varying (LPV) models form a powerful model class to analyze and control a (nonlinear) system of interest. Identifying a LPV model of a nonlinear system can be challenging due to the difficulty of selecting the scheduling variable(s) a priori, which is quite challenging in case a first principles based understanding of the system is unavailable. This paper presents a systematic LPV embedding approach starting from nonlinear fractional representation models. A nonlinear system is identified first using a nonlinear block-oriented linear fractional representation (LFR) model. This nonlinear LFR model class is embedded into the LPV model class by factorization of the static nonlinear block present in the model. As a result of the factorization a LPV-LFR or a LPV state-space model with an affine dependency results. This approach facilitates the selection of the scheduling variable from a data-driven perspective. Furthermore the estimation is not affected by measurement noise on the scheduling variables, which is often left untreated by LPV model identification methods. The proposed approach is illustrated on two well-established nonlinear modeling benchmark examples

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory

    Towards deterministic subspace identification for autonomous nonlinear systems

    Get PDF
    The problem of identifying deterministic autonomous linear and nonlinear systems is studied. A specific version of the theory of deterministic subspace identification for discrete-time autonomous linear systems is developed in continuous time. By combining the subspace approach to linear identification and the differential-geometric approach to nonlinear control systems, a novel identification framework for continuous-time autonomous nonlinear systems is developed
    • …
    corecore