62 research outputs found

    Trilinos I/O Support (Trios)

    Get PDF

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Automating Topology Aware Mapping for Supercomputers

    Get PDF
    Petascale machines with hundreds of thousands of cores are being built. These machines have varying interconnect topologies and large network diameters. Computation is cheap and communication on the network is becoming the bottleneck for scaling of parallel applications. Network contention, specifically, is becoming an increasingly important factor affecting overall performance. The broad goal of this dissertation is performance optimization of parallel applications through reduction of network contention. Most parallel applications have a certain communication topology. Mapping of tasks in a parallel application based on their communication graph, to the physical processors on a machine can potentially lead to performance improvements. Mapping of the communication graph for an application on to the interconnect topology of a machine while trying to localize communication is the research problem under consideration. The farther different messages travel on the network, greater is the chance of resource sharing between messages. This can create contention on the network for networks commonly used today. Evaluative studies in this dissertation show that on IBM Blue Gene and Cray XT machines, message latencies can be severely affected under contention. Realizing this fact, application developers have started paying attention to the mapping of tasks to physical processors to minimize contention. Placement of communicating tasks on nearby physical processors can minimize the distance traveled by messages and reduce the chances of contention. Performance improvements through topology aware placement for applications such as NAMD and OpenAtom are used to motivate this work. Building on these ideas, the dissertation proposes algorithms and techniques for automatic mapping of parallel applications to relieve the application developers of this burden. The effect of contention on message latencies is studied in depth to guide the design of mapping algorithms. The hop-bytes metric is proposed for the evaluation of mapping algorithms as a better metric than the previously used maximum dilation metric. The main focus of this dissertation is on developing topology aware mapping algorithms for parallel applications with regular and irregular communication patterns. The automatic mapping framework is a suite of such algorithms with capabilities to choose the best mapping for a problem with a given communication graph. The dissertation also briefly discusses completely distributed mapping techniques which will be imperative for machines of the future.published or submitted for publicationnot peer reviewe

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)(revised 08/2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Performance Measurement and Analysis of Large-Scale Parallel Applications on Leadership Computing Systems

    Get PDF

    Project Final Report: HPC-Colony II

    Full text link

    Low‐latency Java communication devices on RDMA‐enabled networks

    Get PDF
    This is the peer reviewed version of the following article: Expósito, R. R., Taboada, G. L., Ramos, S., Touriño, J., & Doallo, R. (2015). Low‐latency Java communication devices on RDMA‐enabled networks. Concurrency and Computation: Practice and Experience, 27(17), 4852-4879., which has been published in final form at https://doi.org/10.1002/cpe.3473. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] Providing high‐performance inter‐node communication is a key capability for running high performance computing applications efficiently on parallel architectures. In fact, current systems deployments are aggregating a significant number of cores interconnected via advanced networking hardware with Remote Direct Memory Access (RDMA) mechanisms, that enable zero‐copy and kernel‐bypass features. The use of Java for parallel programming is becoming more promising thanks to some useful characteristics of this language, particularly its built‐in multithreading support, portability, easy‐to‐learn properties, and high productivity, along with the continuous increase in the performance of the Java virtual machine. However, current parallel Java applications generally suffer from inefficient communication middleware, mainly based on protocols with high communication overhead that do not take full advantage of RDMA‐enabled networks. This paper presents efficient low‐level Java communication devices that overcome these constraints by fully exploiting the underlying RDMA hardware, providing low‐latency and high‐bandwidth communications for parallel Java applications. The performance evaluation conducted on representative RDMA networks and parallel systems has shown significant point‐to‐point performance increases compared with previous Java communication middleware, allowing to obtain up to 40% improvement in application‐level performance on 4096 cores of a Cray XE6 supercomputer.Ministerio de Economía y Competitividad; TIN2013-42148-PXunta de Galicia; GRC2013/055Ministerio de Educación y Ciencia; AP2010-434
    corecore