1,033 research outputs found

    Automatic Selection of Relevant Attributes for Multi-Sensor Remote Sensing Analysis: A Case Study on Sea Ice Classification

    Get PDF
    It is of considerable benefit to combine information obtained from different satellite sensors to achieve advanced and improved characterization of sea ice conditions. However, it is also true that not all the information is relevant. It may be redundant, corrupted, or unnecessary for the given task, hence decreasing the performance of the algorithms. Therefore, it is crucial to select an optimal set of image attributes which provides the relevant information content to enhance the efficiency and accuracy of the image interpretation and retrieval of geophysical parameters. Comprehensive studies have been focused on the analysis of relevant features for sea ice analysis obtained from different sensors, especially synthetic aperture radar. However, the outcomes of these studies are mostly data and application-dependent and can, therefore, rarely be generalized. In this article, we employ a feature selection method based on graph Laplacians, which is fully automatic and easy to implement. The proposed approach assesses relevant information on a global and local level using two metrics and selects relevant features for different regions of an image according to their physical characteristics and observation conditions. In the recent study, we investigate the effectiveness of this approach for sea ice classification, using different multi-sensor data combinations. Experiments show the advantage of applying multi-sensor data sets and demonstrate that the attributes selected by our method result in high classification accuracies. We demonstrate that our approach automatically considers varying technical, sensor-specific, environmental, and sea ice conditions by employing flexible and adaptive feature selection method as a pre-processing step

    Arctic Sea Ice Characterization using Spaceborne Fully Polarimetric L-, C- and X-Band SAR with Validation by Airborne Measurements

    Get PDF
    Accepted manuscript version. Published version available at https://doi.org/10.1109/TGRS.2018.2809504.In recent years, spaceborne synthetic aperture radar (SAR) polarimetry has become a valuable tool for sea ice analysis. Here, we employ an automatic sea ice classification algorithm on two sets of spatially and temporally near coincident fully polarimetric acquisitions from the ALOS-2, Radarsat-2, and TerraSAR-X/TanDEM-X satellites. Overlapping coincident sea ice freeboard measurements from airborne laser scanner data are used to validate the classification results. The automated sea ice classification algorithm consists of two steps. In the first step, we perform a polarimetric feature extraction procedure. Next, the resulting feature vectors are ingested into a trained neural network classifier to arrive at a pixelwise supervised classification. Coherency matrix-based features that require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix-based features, which makes coherency matrix-based features dispensable for the purpose of sea ice classification. Among the most useful features for classification are matrix invariant-based features (geometric intensity, scattering diversity, and surface scattering fraction). Classification results show that 100% of the open water is separated from the surrounding sea ice and that the sea ice classes have at least 96.9% accuracy. This analysis reveals analogous results for both X-band and C-band frequencies and slightly different for the L-band. The subsequent classification produces similarly promising results for all four acquisitions. In particular, the overlapping image portions exhibit a reasonable congruence of detected sea ice when compared with high-resolution airborne measurements

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    EOS Data and Information System (EOSDIS)

    Get PDF
    In the past decade, science and technology have reached levels that permit assessments of global environmental change. Scientific success in understanding global environmental change depends on integration and management of numerous data sources. The Global Change Data and Information System (GCDIS) must provide for the management of data, information dissemination, and technology transfer. The Earth Observing System Data and Information System (EOSDIS) is NASA's portion of this global change information system

    Year-around C- and L-band observation around the MOSAiC ice floe with high spatial and temporal resolution

    Get PDF
    In September 2019, the German research icebreaker Polarstern started the largest multidisciplinary Arctic expedition, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to ice floes at high Arctic for a whole year, thus including the winter season, the main goal of the expedition is to better understand and quantify relevant processes within the atmosphere-ice-ocean system that impact the sea ice, ultimately leading to improved climate models. Satellite remote sensing, specially multi-frequency synthetic aperture radar (SAR) plays a major role to achieve this goal. Two major objectives in SAR based remote sensing of sea ice is on the one hand to have a large coverage, and on the other hand to obtain a radar response that carries as much information as possible. A comprehensive set of C- and L- band SAR images were acquired during the course of MOSAiC. In this initial study we evaluate the effects of seasonal changes on C- and L-band backscatter in respect to three different sea ice types, i.e., Young Ice, Smooth Ice and Rough/Deformed Ice along with the performance of sea ice type retrieval of a established algorithm. Areas of deformed, smooth and young sea ice were observed in the vicinity of R/V Polarstern and these areas are included whenever possible in the yearlong time series. For both frequencies a change in all backscatter channels values can be observed during the early melt season. This is first noticeable in the C-band images and later followed by a change in the L-band images, probably caused by their different penetration depth and volume scattering sensitivities

    Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar

    Get PDF
    Use of polarimetric SAR data for offshore pollution monitoring is relatively newand shows great potential for operational offshore platformmonitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameterswere extracted fromdifferent types of oil and ‘look-alike’ spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services

    Performance comparison of reflector and AESA-based digital beamforming for small satellite spaceborne SAR

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) sensors play an ever increasingly important role in Earth observation in the fields of science, geomatics, defence, commercial products and services. The user community requirements for large, high temporal and spatial resolution swaths has driven the need for low-cost, high-performance systems. The increasing availability of commercial launch vehicles shall bolster the manufacturing and industrialisation of a smaller class sensor. This work deals with the performance comparison between a small satellite class planar array and reflector antenna system. Here the focus lies on digital beamforming techniques for the operation in wide-swath, high-resolution stripmap mode. For this the sensor sensitivity and ambiguity suppression performance in range and azimuth are derived. The Jupyter notebook environment with code in the Python language served as a convenient mechanism for modelling and verifying different performance aspects. These performance metrics are simulated and verified against existing systems. The limitations the spherical Earth geometry has on the transmitter timing and the imaged scene are derived. This together with the SAR platform orbital characteristics lead to the establishment of antenna design constraints. A planar array and reflector system are modelled with common design specifications and compared to a sea ice monitoring scenario. The use of digital beamforming techniques together with a high gain reflector antenna surface provided evidence that a reflector antenna would serve as a feasible alternative to planar arrays for spaceborne SAR missions

    The role of brine release and sea ice drift for winter mixing and sea ice formation in the Baltic Sea

    Get PDF

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure
    • …
    corecore