20,768 research outputs found

    Technology Solutions for Developmental Math: An Overview of Current and Emerging Practices

    Get PDF
    Reviews current practices in and strategies for incorporating innovative technology into the teaching of remedial math at the college level. Outlines challenges, emerging trends, and ways to combine technology with new concepts of instructional strategy

    The mind's eye in blindfold chess

    Get PDF
    Visual imagery plays an important role in problem solving, and research into blindfold chess has provided a wealth of empirical data on this question. We show how a recent theory of expert memory (the template theory, Gobet & Simon, 1996, 2000) accounts for most of these data. However, how the mind’s eye filters out relevant from irrelevant information is still underspecified in the theory. We describe two experiments addressing this question, in which chess games are presented visually, move by move, on a board that contains irrelevant information (static positions, semi-static positions, and positions changing every move). The results show that irrelevant information affects chess masters only when it changes during the presentation of the target game. This suggests that novelty information is used by the mind’s eye to select incoming visual information and separate “figure” and “ground.” Mechanisms already present in the template theory can be used to account for this novelty effect

    Digital technology in mathematics education: Why it works (or doesn't)

    Get PDF
    The integration of digital technology confronts teachers, educators and researchers with many questions. What is the potential of ICT for learning and teaching, and which factors are decisive in making it work in the mathematics classroom? To investigate these questions, six cases from leading studies in the field are described, and decisive success factors are identified. This leads to the conclusion that crucial factors for the success of digital technology in mathematics education include the design of the digital tool and corresponding tasks exploiting the tool's pedagogical potential, the role of the teacher and the educational context

    Kaleidoscope JEIRP on Learning Patterns for the Design and Deployment of Mathematical Games: Final Report

    Get PDF
    Project deliverable (D40.05.01-F)Over the last few years have witnessed a growing recognition of the educational potential of computer games. However, it is generally agreed that the process of designing and deploying TEL resources generally and games for mathematical learning specifically is a difficult task. The Kaleidoscope project, "Learning patterns for the design and deployment of mathematical games", aims to investigate this problem. We work from the premise that designing and deploying games for mathematical learning requires the assimilation and integration of deep knowledge from diverse domains of expertise including mathematics, games development, software engineering, learning and teaching. We promote the use of a design patterns approach to address this problem. This deliverable reports on the project by presenting both a connected account of the prior deliverables and also a detailed description of the methodology involved in producing those deliverables. In terms of conducting the future work which this report envisages, the setting out of our methodology is seen by us as very significant. The central deliverable includes reference to a large set of learning patterns for use by educators, researchers, practitioners, designers and software developers when designing and deploying TEL-based mathematical games. Our pattern language is suggested as an enabling tool for good practice, by facilitating pattern-specific communication and knowledge sharing between participants. We provide a set of trails as a "way-in" to using the learning pattern language. We report in this methodology how the project has enabled the synergistic collaboration of what started out as two distinct strands: design and deployment, even to the extent that it is now difficult to identify those strands within the processes and deliverables of the project. The tools and outcomes from the project can be found at: http://lp.noe-kaleidoscope.org

    Integrating Technology With Student-Centered Learning

    Get PDF
    Reviews research on technology's role in personalizing learning, its integration into curriculum-based and school- or district-wide initiatives, and the potential of emerging digital technologies to expand student-centered learning. Outlines implications
    • …
    corecore