930 research outputs found

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Técnicas de gestão de feixe de onda para sistemas Massive MIMO nas redes 5G NR

    Get PDF
    The use of Millimeter wave (mmWave) spectrum frequencies is seen as a key enabler technology for the future wireless communication systems to overcome the bandwidth shortage of the sub 6GHz microwave spectrum band, enabling high speed data transmissions in the 5G/6G systems. Nevertheless, mmWave propagation characteristics are associated to significant free-path losses and many more attenuations that become even more harsher as the frequency increases, rendering the communication challenging at this frequencies. To overcome these distinct disadvantages, multiple antenna arrays are employed to allow beamforming techniques for the transmission of narrower concentrated beams in more precise directions and less interference levels between them, consequently improving the link budget. Thus, to constantly assure that the communication with each device is done using the beam pair that allows the best possible connectivity, a set of Beam Management control procedures is necessary to assure an efficient beamformed connection establishment and its continuous maintenance between the device and the network. This dissertation will address the description of the Initial Beam Establishment (IBE) BM procedure, focusing the selection of the most suitable transmit-receive beam pair available after completed beam sweeping techniques to measure the different power levels of the received signal. The main goal is to design a new 3GPP-standard compliant beam pair selection algorithm based on SSS angle estimation (BSAE), that makes use of multiple Synchronization Signal Blocks (SSBs) to maximize the Reference Signal Received Power (RSRP) value at the receiver, through the selected beam pair. This optimization is done using the Secondary Synchronization Signals (SSSs) present in each SSB to perform channel estimation in the digital domain (comprising the effects of the analog processing). Afterwards, the combination of those estimations were used to perform the equivalent channel propagation matrix estimation without the analog processing effects. Finally, through the channel propagation matrix, the angle that maximizes the RSRP was determined to compute the most suitable beam through the aggregated response vector. The obtained results show that the proposed algorithm achieves better performance levels compared to a conventional beam pair selection algorithm. Furthermore, a comparison with an optimal case is also done, i.e., the situation where the channel is known, and the optimal beam pair angle can be determined. Therefore, the similar performance results compared to the optimal case indicates that the proposed algorithm is interesting for practical 5G mmWave mMIMO implementations, according to 3GPP-compliant standards.O uso de frequências na banda das ondas milimétricas é visto como uma tecnologia chave para os futuros sistemas de comunicação móveis, tendo em vista a ultrapassar o problema da escassez de banda a sub-6 GHz, e por permitir as elevadas taxas de dados requeridas para sistemas 5G/6G. Contudo, a propagação deste tipo de ondas está associado a perdas acentuadas em espaço livre e várias atenuações que se tornam cada vez mais significativas com o aumento do valor da frequência, impondo obstáculos à comunicação. Para ultrapassar estas adversidades, agregados constituídos por múltiplos elementos de antena são implementados por forma a permitir técnicas de formação de feixe e possibilitar a transmissão de feixes mais estreitos e altamente direcionais, diminuindo os níveis de interferência e melhorando consequentemente o link budget. Deste modo, para assegurar constantemente que a comunicação efetuada em cada dispositivo ocorre utilizando o conjunto de feixes que proporciona o melhor nível de conectividade, é então necessário um conjunto de procedimentos de controlo de gestão de feixe, assegurando um estabelecimento eficiente da comunicação e a sua contínua manutenção entre um dispositivo e a rede. Esta dissertação descreve o procedimento de gestão de feixe conhecido como estabelecimento inicial de feixe, focando o processo de seleção do melhor par de feixe de transmissão-receção disponível após o uso de técnicas de varrimento de feixe por fim a efetuar medições dos diferentes níveis de potência do sinal recebido. O principal objetivo passa pela conceção de um novo algoritmo de estabelecimento de par de feixes baseado em estimações de ângulo (BSAE), que explora o uso de múltiplos SSBs definidos pelo 3GPP, por forma a maximizar o RSRP no recetor, através do feixe selecionado. Esta otimização é feita usando os sinais de sincronização secundários (SSSs) presentes em cada SSB para efetuar uma estimação de canal no domínio digital (que contém o efeito do processamento analógico). Depois, combinando essas estimações, foi feita uma estimação da matriz do canal de propagação, sem o efeito desse processamento analógico. Finalmente, através da matriz do canal de propagação, foi determinado o ângulo que maximiza o RSRP, e calculado o feixe através do vetor de resposta do agregado. Os resultados obtidos demonstram que o algoritmo proposto atinge melhor desempenho quando comparado com o algoritmo convencional de seleção de par de feixes. Foi feita ainda uma comparação com o caso ótimo, isto é, com o caso em que se conhece completamente o canal e se obtém um ângulo ótimo. Os resultados obtidos pelo algoritmo proposto foram muito próximos do caso ótimo, pelo que é bastante interessante para sistemas práticos 5G mmWave mMIMO, que estejam de acordo com o padrão 3GPP.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    B5G 초고밀도 네트워크에서 유연한 이동성 관리 기법

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 박세웅.차세대 모바일 이동통신을 위한 새로운 서비스와 어플리케이션이 등장함에 따라, 사용자들은 기존 시스템 대비 더 높은 전송 속도를 요구한다. 더불어 사용자들은 높은 데이터 전송 속도를 안정적으로 보장 받기를 원한다. 모바일 네트워크 사용자의 데이터 트래픽이 증가할수록 네트워크의 밀집도를 증가시키는 초고밀도 네트워크 (ultra-dense network)에 대한 관심이 높아지고 있다. 그러나 이러한 초고밀도 네트워크 환경에서는 기존 네트워크 대비 핸드오버가 자주 발생하게 되고, 이로 인해 네트워크 성능이 제한되는 문제가 드러나고 있다. 따라서 초고밀도 네트워크의 성능을 극대화하기 위해서는 효율적인 이동성 관리의 중요성이 어느때보다 부각되고 있다. 본 학위논문에서는 초고밀도 네트워크 환경에서 효율적인 이동성 관리를 위하여 다음의 세 가지 전략을 고려한다. 1) MIAB (mobile integrated access and backhaul) 네트워크에서의 이동성 관리, 2) 딥러닝 기반 장애물 예측을 통한 사전적인 핸드오버, 3) 다중 연결 환경에서의 강인한 이동성 관리. 첫째로, MIAB 네트워크에서 사용자의 QoS (quality-of-service)에 심각한 영향을 미치는 핸드오버 지연 시간을 감소시키기 위한 핸드오버 기법을 제안한다. MIAB 네트워크 환경에서 발생할 수 있는 intra-gNB 핸드오버, inter-gNB 핸드오버, 부모 MIAB 노드 핸드오버의 세 가지 핸드오버 케이스를 분류하고, 부모 MIAB 노드와 자녀 MIAB 노드의 속도에 따른 각 핸드오버 케이스 발생 확률 모델을 제시하였다. 또한, 상향링크 컨트롤 플레인 데이터 전송 지연 시간을 분석하였다. 제안하는 핸드오버 기법은 저지연 상향링크 컨트롤 플레인 데이터 전송 기법과 자녀 MIAB 노드의 RACH-less 핸드오버 기법을 포함한다. 시뮬레이션을 통해 제안하는 MIAB 핸드오버 기법이 기존 핸드오버 기법 대비 핸드오버 지연 시간 및 오버헤드 성능보다 매우 뛰어난 것을 확인하였다. 다음으로 안정적인 이동성 관리를 위한 장애물 예측 기반의 사전 핸드오버 (BAPH) 기법을 제시한다. BAPH는 딥러닝 기법을 활용하여 장애물과 차량의 이동성을 예측하고, 특정 차량이 기지국과 LoS (line-of-sight)에 있는지를 예측한다. 예측된 차량의 미래 위치와 장애물의 미래 위치 정보를 이용하여 gNB와 RLF (radio link failure)를 겪기 이전 시점에 다른 gNB로 핸드오버를 수행한다. 제안하는 사전 핸드오버 기법의 성능을 다양한 도로 환경 및 차량 속도를 반영한 시뮬레이션을 통해 평가하였다. 마지막으로 다중 연결 네트워크의 장점을 최대로 끌어내기 위한 안정적인 핸드오버 기법을 제안한다. 앵커 BS와 액티브 BS 집합이 각 모바일 기기마다 설정되는 사용자 중심 초고밀도 네트워크 (UUDN)을 고려한다. 앵커 BS는 주변 BS들의 RACH 오케스트레이션을 통하여 모바일 기기가 핸드오버를 위해 전송하는 RACH 프리앰블을 다수의 BS가 받을 수 있도록 한다. 또한 핸드오버 과정에서 하나의 액티브 BS에 RLF가 발생하는 경우 핸드오버 과정을 지속하여 빠르게 RLF를 복구하는 기법을 제안한다. 시뮬레이션을 통해 제안하는 핸드오버 기법이 RLF 지속 시간을 현재 핸드오버 기법 대비 줄이는 것을 확인하였으며, 연결 수가 증가하는 경우에 RLF 지속 기간을 더 감소시키는 것을 확인하였다. 요약하면, 차세대 모바일 네트워크에서 이동성 관리와 관련된 새로운 네트워크 구조 및 프로토콜에 대한 문제를 제기한다. 현재 이동성 관리 기법이 고이동성 환경이나 초고밀도 네트워크 환경에서 네트워크의 성능을 저하시키는 것을 확인하였다. 따라서 차세대 모바일 네트워크 시스템에서의 새로운 이동성 관리 기법 및 전략을 제안한다. 제안하는 모든 이동성 관리 기법은 시뮬레이션 결과를 통해 성능을 평가되었다.As new services and applications for next-generation mobile communication emerge, users of mobile communication systems require a higher data rate than the existing system. In addition, mobile communication users want a high data rate to be reliably guaranteed anytime, anywhere. As data traffic of mobile network users increases, ultra-dense networks (UDN) that increase network density are in the limelight. However, in such a UDN environment, handovers (HOs) occur more frequently than in the existing mobile network system, which limits network performance. Therefore, to maximize the performance of the UDN, the importance of efficient mobility management is being emphasized more than ever. In this dissertation, the following three strategies are considered for efficient mobility management in the UDN environment: 1) Mobility management in mobile integrated access and backhaul (MIAB) networks, 2) Proactive HO through blockage prediction based on deep learning technology, 3) Reliable HO using the anchor node in the multi-connectivity environment. First, we propose a novel handover (HO) scheme for the MIAB network to reduce handover interruption time (HIT) and radio link failure (RLF) that have a significant impact on users' quality of service (QoS). We investigate HO cases that cover intra-gNB HO, inter-gNB HO, and parent MIAB node HO and develop their probabilistic models according to the velocities of the parent MIAB node and the child MIAB node. In addition, we investigate the latency in uplink (UL) control plane (CP) data transmission and each HO case for the baseline MIAB network. Our proposed HO scheme consists of low-latency UL CP data transmission with semi-persistent resource pre-allocation and RACH-less HO procedure for child MIAB nodes. Through simulation, we verify our proposed MIAB HO scheme outperforms the baseline HO scheme in terms of HO delay and HO overhead. Second, we propose the blockage-aware proactive HO (BAPH) scheme to support reliable mobility management. BAPH leverages a deep neural network (DNN) to predict the mobility of blockages and which BSs will be in the line-of-sight (LoS) with the vehicle device. With the predicted future blockage locations, the network supports proactive HO to the target gNB before radio link failure (RLF) occurs with the current serving gNB. We evaluate the performance of the proposed proactive HO scheme through simulations in various road environments. Finally, a reliable HO scheme that fully leverages the advantage of the multi-connectivity network is proposed. We consider a user-centric UDN (UUDN) architecture composed of an anchor BS and active BSs set for each UE. The anchor BS orchestrates the RACH of neighbor BSs that are not included in the active BS set for the target UE so that multiple target BSs can receive the RACH preamble transmitted by the UE. In addition, we propose a fast RLF recovery scheme that allows the existing HO process to continue when RLF occurs in the serving BS included in the active BS set. Through simulation, the performance of the proposed HO scheme is verified that the RLF duration of the UE is reduced compared to the current HO scheme even when the number of connections increases in a multi-connectivity environment. In summary, we claim issues in the new network architecture and protocols for the next-generation mobile networks related to mobility management. We demonstrate that the existing mobility management schemes limit the network performance in high-mobility environments and UDN environments. Therefore, we propose new mobility management schemes and strategies for the future mobile network system. All the proposed mobility management schemes are evaluated with simulation results.1 Introduction 1 1.1 Vision of B5G and Challenges 1 1.1.1 Vision of B5G Networks and Services 1 1.1.2 Research Trends and Challenges 2 1.2 Motivation 3 1.3 Main Contributions 5 1.3.1 Mobile Integrated Access and Backhaul Handover 5 1.3.2 Blockage Prediction-based Proactive Handover 6 1.3.3 Mobility Management in Distributed User-centric Ultra-dense Network 7 1.4 Organization of the Dissertation 7 2 Mobility Management of Multi-hop Mobile Integrated Access and Backhaul Network 9 2.1 Introduction 9 2.1.1 Contributions 11 2.1.2 Organization 12 2.2 Preliminary Study 12 2.2.1 IAB Network and Moving Cells 12 2.2.2 5G NR Handover 13 2.2.3 Motivation 14 2.3 System Model 15 2.3.1 Network Model 15 2.3.2 Communication Model 15 2.3.3 Directional Beamforming Model 16 2.3.4 Handover Model 18 2.4 Analysis of Mobility Management in MIAB Networks 18 2.4.1 UL CP Data Transmission Latency 19 2.4.2 Handover Latency 21 2.4.3 Handover Probability 23 2.5 Proposed Mobile IAB Handover Scheme 27 2.5.1 Low-Latency UL CP Data Transmission Scheme 27 2.5.2 Inter-gNB Handover Scheme 29 2.6 Performance Evaluation 31 2.6.1 HO Probability 33 2.6.2 Handover Latency 34 2.6.3 Effective Spectral Efficiency 37 2.7 Summary 41 3 Blockage-aware Proactive Handover for mmWave V2I Communications 42 3.1 Introduction 42 3.2 Preliminaries and Motivation 44 3.2.1 Effect of Blockages in mmWave Systems 44 3.2.2 DNN based Network Prediction 46 3.2.3 Motivation 46 3.3 Analysis on Blockage Effect 47 3.4 Proposed BAPH System 51 3.4.1 System Architecture 51 3.4.2 Communication Model 51 3.4.3 Deep Learning-based Location Prediction 52 3.4.4 Unobserved Blockage Detection and Estimation 54 3.4.5 Proactive Handover Process 57 3.6 Performance Evaluation 58 3.7 Summary 62 4 Anchor Node Based Reliable Handover in User-centric Ultra-dense Network 64 4.1 Introduction 64 4.2 Motivation 65 4.2.1 HO Process in 5G NR 65 4.2.2 HO Failure in the Baseline HO Scheme 66 4.3 Proposed Distributed User-centric Ultra-Dense Network Architecture 69 4.4 Anchor Node-based Mobility Management 71 4.5 Performance Evaluation 73 4.6 Summary 75 5 Concluding Remarks 76 5.1 Research Contributions 76 5.2 Future Research Directions 77 Abstract (In Korean) 85박

    Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing

    Full text link
    Wireless communication at the terahertz (THz) frequency bands (0.1-10THz) is viewed as one of the cornerstones of tomorrow's 6G wireless systems. Owing to the large amount of available bandwidth, THz frequencies can potentially provide wireless capacity performance gains and enable high-resolution sensing. However, operating a wireless system at the THz-band is limited by a highly uncertain channel. Effectively, these channel limitations lead to unreliable intermittent links as a result of a short communication range, and a high susceptibility to blockage and molecular absorption. Consequently, such impediments could disrupt the THz band's promise of high-rate communications and high-resolution sensing capabilities. In this context, this paper panoramically examines the steps needed to efficiently deploy and operate next-generation THz wireless systems that will synergistically support a fellowship of communication and sensing services. For this purpose, we first set the stage by describing the fundamentals of the THz frequency band. Based on these fundamentals, we characterize seven unique defining features of THz wireless systems: 1) Quasi-opticality of the band, 2) THz-tailored wireless architectures, 3) Synergy with lower frequency bands, 4) Joint sensing and communication systems, 5) PHY-layer procedures, 6) Spectrum access techniques, and 7) Real-time network optimization. These seven defining features allow us to shed light on how to re-engineer wireless systems as we know them today so as to make them ready to support THz bands. Furthermore, these features highlight how THz systems turn every communication challenge into a sensing opportunity. Ultimately, the goal of this article is to chart a forward-looking roadmap that exposes the necessary solutions and milestones for enabling THz frequencies to realize their potential as a game changer for next-generation wireless systems.Comment: 26 pages, 6 figure

    Towards versatile access networks (Chapter 3)

    Get PDF
    Compared to its previous generations, the 5th generation (5G) cellular network features an additional type of densification, i.e., a large number of active antennas per access point (AP) can be deployed. This technique is known as massive multipleinput multiple-output (mMIMO) [1]. Meanwhile, multiple-input multiple-output (MIMO) evolution, e.g., in channel state information (CSI) enhancement, and also on the study of a larger number of orthogonal demodulation reference signal (DMRS) ports for MU-MIMO, was one of the Release 18 of 3rd generation partnership project (3GPP Rel-18) work item. This release (3GPP Rel-18) package approval, in the fourth quarter of 2021, marked the start of the 5G Advanced evolution in 3GPP. The other items in 3GPP Rel-18 are to study and add functionality in the areas of network energy savings, coverage, mobility support, multicast broadcast services, and positionin

    Standalone and Non-Standalone Beam Management for 3GPP NR at mmWaves

    Full text link
    The next generation of cellular networks will exploit mmWave frequencies to dramatically increase the network capacity. The communication at such high frequencies, however, requires directionality to compensate the increase in propagation loss. Users and base stations need to align their beams during both initial access and data transmissions, to ensure the maximum gain is reached. The accuracy of the beam selection, and the delay in updating the beam pair or performing initial access, impact the end-to-end performance and the quality of service. In this paper we will present the beam management procedures that 3GPP has included in the NR specifications, focusing on the different operations that can be performed in Standalone (SA) and in Non-Standalone (NSA) deployments. We will also provide a performance comparison among different schemes, along with design insights on the most important parameters related to beam management frameworks.Comment: 7 pages, 5 figures, 1 table. Please cite it as M. Giordani, M. Polese, A. Roy, D. Castor and M. Zorzi, "Standalone and Non-Standalone Beam Management for 3GPP NR at mmWaves," in IEEE Communications Magazine, vol. 57, no. 4, pp. 123-129, April 201
    corecore