62,975 research outputs found

    Decoupling and stability of algorithms for boundary value problems

    Get PDF
    The ordinary differential equations occurring in linear boundary value problems characteristically have both stable and unstable solution modes. Therefore a stable numerical algorithm should avoid both forward and backward integration of solutions on large intervals. It is shown that most methods (like multiple shooting, collocation, invariant imbedding and difference methods) derive their stability from the fact that they all decouple the continuous or the discrete problem sooner or later (for instance when solving a linear system). This decoupling is related to the dichotomy of the ordinary differential equations. In fact it turns out that the inherent initial value instability is an important prerequisite for a stable utilization of the decoupled representations from which the solutions are computed. How this stability is related to the use of the boundary conditions is also investigated

    Computationally Efficient Steady--State Simulation Algorithms for Finite-Element Models of Electric Machines.

    Full text link
    The finite element method is a powerful tool for analyzing the magnetic characteristics of electric machines, taking account of both complex geometry and nonlinear material properties. When efficiency is the main quantity of interest, loss calculations can be affected significantly due to the development of eddy currents as a result of Faraday’s law. These effects are captured by the periodic steady-state solution of the magnetic diffusion equation. A typical strategy for calculating this solution is to analyze an initial value problem over a time window of sufficient length so that the transient part of the solution becomes negligible. Unfortunately, because the time constants of electric machines are much smaller than their excitation period at peak power, the transient analysis strategy requires simulating the device over many periods to obtain an accurate steady-state solution. Two other categories of algorithms exist for directly calculating the steady-state solution of the magnetic diffusion equation; shooting methods and the harmonic balance method. Shooting methods search for the steady-state solution by solving a periodic boundary value problem. These methods have only been investigated using first order numerical integration techniques. The harmonic balance method is a Fourier spectral method applied in the time dimension. The standard iterative procedures used for the harmonic balance method do not work well for electric machine simulations due to the rotational motion of the rotor. This dissertation proposes several modifications of these steady-state algorithms which improve their overall performance. First, we demonstrate how shooting methods may be implemented efficiently using Runge-Kutta numerical integration methods with mild coefficient restrictions. Second, we develop a preconditioning strategy for the harmonic balance equations which is robust against large time constants, strong nonlinearities, and rotational motion. Third, we present an adaptive framework for refining the solutions based on a local error criterion which further reduces simulation time. Finally, we compare the performance of the algorithms on a practical model problem. This comparison demonstrates the superiority of the improved steady-state analysis methods, and the harmonic balance method in particular, over transient analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113322/1/pries_1.pd

    A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control

    Full text link
    This paper introduces a family of iterative algorithms for unconstrained nonlinear optimal control. We generalize the well-known iLQR algorithm to different multiple-shooting variants, combining advantages like straight-forward initialization and a closed-loop forward integration. All algorithms have similar computational complexity, i.e. linear complexity in the time horizon, and can be derived in the same computational framework. We compare the full-step variants of our algorithms and present several simulation examples, including a high-dimensional underactuated robot subject to contact switches. Simulation results show that our multiple-shooting algorithms can achieve faster convergence, better local contraction rates and much shorter runtimes than classical iLQR, which makes them a superior choice for nonlinear model predictive control applications.Comment: 8 page

    Automatic computation of quantum-mechanical bound states and wavefunctions

    Get PDF
    We discuss the automatic solution of the multichannel Schr\"odinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Pr\"ufer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index
    • …
    corecore