193 research outputs found

    Relaxations and Approximations for Mixed-Integer Optimal Control

    Get PDF
    This thesis treats different aspects of the class of Mixed-Integer Optimal Control Problems (MIOCPs). These are optimization problems that combine the difficulties of underlying dynamic processes with combinatorial decisions. Typically, these combinatorial decisions are realized as switching decisions between the system’s different operations modes. During the last decades, direct methods emerged as the state-of-the-art solvers for MIOCPs. The formulation of a valid, tight and dependable integral relaxation, i.e., the formulation of a model for fractional values, plays an important role for these direct solution methods. We give detailed insight into several relaxation approaches for MIOCPs and compare them with regard to their respective structures. In particular, these are the typical solution’s structures and properties as convexity, problem size and numerical behavior. From these structural properties, we deduce some required specifications of a solver. Additionally, the modeling and subsequent limitation of the switching process directly tackle the class-specific typical issue of chattering solutions. One of the relaxation methods for MIOCPs is the outer convexification, where the binary variables only enter affinely. For the approximation of this relaxation’s solution, we took up on the control approximation problem in integral sense derived by Sager as part of a decomposition approach for MIOCPs with affine binary controls. This problem describes the optimal approximation of fractional controls with binary controls such that the corresponding dynamic process is changed as little as possible. For the multi-dimensional problem, we developed a new heuristic, which for the first time gives a bound that only depends on the control grid and not anymore on the number of the system’s controls. For the generalization of the control approximation problem with additional constraints, we derived a tailored branch-and-bound algorithm, which is based on the properties of the Lagrangian relaxation of the one-dimensional problem. This algorithm beats state-of-the-art commercial solvers for Mixed-Integer Linear Programs (MILPs) for this special approximation problem by several orders of magnitude. Overall, we present several, partially new modeling approaches for MIOCPs together with the accompanying structural properties. On this basis, we develop new theories for the approximation of certain relaxed solutions. We discuss the efficient implementation of the resulting structure exploiting algorithms. This leads to a deeper and better understanding of MIOCPs. We show the practicability of the theoretical observations with the help of four prototypical problems. The presented methods and algorithms allow on their basis the direct development of decision support and analysis tools in practice
    • …
    corecore