1,456 research outputs found

    Quantum mechanics of lattice gas automata. II. Boundary conditions and other inhomogeneities

    Full text link
    We continue our analysis of the physics of quantum lattice gas automata (QLGA). Previous work has been restricted to periodic or infinite lattices; simulation of more realistic physical situations requires finite sizes and non-periodic boundary conditions. Furthermore, envisioning a QLGA as a nanoscale computer architecture motivates consideration of inhomogeneities in the `substrate'; this translates into inhomogeneities in the local evolution rules. Concentrating on the one particle sector of the model, we determine the various boundary conditions and rule inhomogeneities which are consistent with unitary global evolution. We analyze the reflection of plane waves from boundaries, simulate wave packet refraction across inhomogeneities, and conclude by discussing the extension of these results to multiple particles.Comment: 24 pages, plain TeX, 9 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages), 3 additional large figures available upon request or from http://math.ucsd.edu/~dmeyer/papers/papers.htm

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge

    Quantum lattice gases and their invariants

    Get PDF
    The one particle sector of the simplest one dimensional quantum lattice gas automaton has been observed to simulate both the (relativistic) Dirac and (nonrelativistic) Schroedinger equations, in different continuum limits. By analyzing the discrete analogues of plane waves in this sector we find conserved quantities corresponding to energy and momentum. We show that the Klein paradox obtains so that in some regimes the model must be considered to be relativistic and the negative energy modes interpreted as positive energy modes of antiparticles. With a formally similar approach--the Bethe ansatz--we find the evolution eigenfunctions in the two particle sector of the quantum lattice gas automaton and conclude by discussing consequences of these calculations and their extension to more particles, additional velocities, and higher dimensions.Comment: 19 pages, plain TeX, 11 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Lattice Gas Automata for Reactive Systems

    Full text link
    Reactive lattice gas automata provide a microscopic approachto the dynamics of spatially-distributed reacting systems. After introducing the subject within the wider framework of lattice gas automata (LGA) as a microscopic approach to the phenomenology of macroscopic systems, we describe the reactive LGA in terms of a simple physical picture to show how an automaton can be constructed to capture the essentials of a reactive molecular dynamics scheme. The statistical mechanical theory of the automaton is then developed for diffusive transport and for reactive processes, and a general algorithm is presented for reactive LGA. The method is illustrated by considering applications to bistable and excitable media, oscillatory behavior in reactive systems, chemical chaos and pattern formation triggered by Turing bifurcations. The reactive lattice gas scheme is contrasted with related cellular automaton methods and the paper concludes with a discussion of future perspectives.Comment: to appear in PHYSICS REPORTS, 81 revtex pages; uuencoded gziped postscript file; figures available from [email protected] or [email protected]

    Traffic flow on realistic road networks with adaptive traffic lights

    Full text link
    We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adaptive vs adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links, and one which is informed by upstream links only. We find that, in general, both the mean and the fluctuation of the travel time are smallest when using the joint upstream-downstream control strategy.Comment: 41 pages, pdflate

    Exact matrix product decay modes of a boundary driven cellular automaton

    Full text link
    We study integrability properties of a reversible deterministic cellular automaton (the rule 54 of [Bobenko et al., Commun. Math. Phys. 158, 127 (1993)]) and present a bulk algebraic relation and its inhomogeneous extension which allow for an explicit construction of Liouvillian decay modes for two distinct families of stochastic boundary driving. The spectrum of the many-body stochastic matrix defining the time propagation is found to separate into sets, which we call orbitals, and the eigenvalues in each orbital are found to obey a distinct set of Bethe-like equations. We construct the decay modes in the first orbital (containing the leading decay mode) in terms of an exact inhomogeneous matrix product ansatz, study the thermodynamic properties of the spectrum and the scaling of its gap, and provide a conjecture for the Bethe-like equations for all the orbitals and their degeneracy.Comment: 25 pages, 3 figure

    Self-organized patterns of coexistence out of a predator-prey cellular automaton

    Full text link
    We present a stochastic approach to modeling the dynamics of coexistence of prey and predator populations. It is assumed that the space of coexistence is explicitly subdivided in a grid of cells. Each cell can be occupied by only one individual of each species or can be empty. The system evolves in time according to a probabilistic cellular automaton composed by a set of local rules which describe interactions between species individuals and mimic the process of birth, death and predation. By performing computational simulations, we found that, depending on the values of the parameters of the model, the following states can be reached: a prey absorbing state and active states of two types. In one of them both species coexist in a stationary regime with population densities constant in time. The other kind of active state is characterized by local coupled time oscillations of prey and predator populations. We focus on the self-organized structures arising from spatio-temporal dynamics of the coexistence. We identify distinct spatial patterns of prey and predators and verify that they are intimally connected to the time coexistence behavior of the species. The occurrence of a prey percolating cluster on the spatial patterns of the active states is also examined.Comment: 19 pages, 11 figure
    • …
    corecore