4,015 research outputs found

    Body MRI artifacts in clinical practice: a physicist\u27s and radiologist\u27s perspective.

    Get PDF
    The high information content of MRI exams brings with it unintended effects, which we call artifacts. The purpose of this review is to promote understanding of these artifacts, so they can be prevented or properly interpreted to optimize diagnostic effectiveness. We begin by addressing static magnetic field uniformity, which is essential for many techniques, such as fat saturation. Eddy currents, resulting from imperfect gradient pulses, are especially problematic for new techniques that depend on high performance gradient switching. Nonuniformity of the transmit radiofrequency system constitutes another source of artifacts, which are increasingly important as magnetic field strength increases. Defects in the receive portion of the radiofrequency system have become a more complex source of problems as the number of radiofrequency coils, and the sophistication of the analysis of their received signals, has increased. Unwanted signals and noise spikes have many causes, often manifesting as zipper or banding artifacts. These image alterations become particularly severe and complex when they are combined with aliasing effects. Aliasing is one of several phenomena addressed in our final section, on artifacts that derive from encoding the MR signals to produce images, also including those related to parallel imaging, chemical shift, motion, and image subtraction

    Introduction to fMRI: experimental design and data analysis

    Get PDF
    This provides an introduction to functional MRI, experimental design and data analysis procedures using statistical parametric mapping approach

    Advances in image acquisition and filtering for MRI neuroimaging at 7 tesla

    Get PDF
    Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths. First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion of the MRI experiment for use with multi-channel RF coils. It is demonstrated that in 2D MRI experiments, shimming on a slice-by slice basis allows utilization of an extra degree of freedom available from the slice dimension, resulting in significant gains in image homogeneity and reduced RF power requirements. After acceptable images are available, we move to address complications of high field imaging that manifest in the fMRI time series. In the second paper, the increased physiological noise present in BOLD time series at high field is addressed with a unique data-driven noise regressor scheme based upon information in the phase component of the MRI signal. It is demonstrated that this method identifies and removes a significant portion of physiological signals, and performs as good or better than other popular data driven methods that use only the magnitude signal information. Lastly, the BOLD phase signal is again leveraged to address the confounding role of veins in resting state BOLD fMRI experiments. The phase regressor technique (previously developed by Dr. Menon) is modified and applied to resting state fMRI to remove macro vascular contributions in the datasets, leading to changes in spatial extent and connectivity of common resting state networks on single subjects and at the group level

    Doctor of Philosophy

    Get PDF
    dissertationThe gold standard for evaluation of arterial disease using MR continues to be contrast-enhanced MR angiography (MRA) with gadolinium-based contrast agents (Gd-MRA). There has been a recent resurgence in interest in methods that do not rely on gadolinium for enhancement of blood vessels due to associations Gd-MRA has with nephrogenic systemic fibrosis (NSF) in patients with impaired renal function. The risk due to NSF has been shown to be minimized when selecting the appropriate contrast type and dose. Even though the risk of NSF has been shown to be minimized, demand for noncontrast MRA has continued to rise to reduce examination cost, and improve patient comfort and ability to repeat scans. Several methods have been proposed and used to perform angiography of the aorta and peripheral arteries without the use of gadolinium. These techniques have had limitations in transmit radiofrequency field (B1+) inhomogeneities, acquisition time, and specific hardware requirements, which have stunted the utility of noncontrast enhanced MRA. In this work feasibility of noncontrast (NC) MRA at 3T of the femoral arteries using dielectric padding, and using 3D radial stack of stars and compressed sensing to accelerate acquisitions in the abdomen and thorax were tested. Imaging was performed on 13 subjects in the pelvis and thighs using high permittivity padding, and 11 in the abdomen and 19 in the thorax using 3D radial stack of stars with tiny golden angle using gold standards or previously published techniques. Qualitative scores for each study were determined by radiologists who were blinded to acquisition type. Vessel conspicuity in the thigh and pelvis showed significant increase when high permittivity padding was used in the acquisition. No significant difference in image quality was observed in the abdomen and thorax when using undersampling, except for the descending aorta in thoracic imaging. All image quality scores were determined to be of diagnostic quality. In this work it is shown that NC-MRA can be improved through the use of high permittivity dielectric padding and acquisition time can be decreased through the use of 3D radial stack of stars acquisitions

    Improving foetal and neonatal echo-planar imaging with image-based shimming

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015O Developing Human Connectome Project pretende realizar um progresso científico único através da criação do primeiro connectome 4D no início da vida do bebé. De forma a criar um mapa dinâmico da conectividade do cérebro do bebé, é fundamental obter imagens funcionais e com ponderação em difusão. A imagem eco-planar (EPI) é a principal sequência de ressonância magnética aplicada na aquisição dessa informação. Esta sequência permite uma aquisição rápida e repetida de imagens cerebrais permitindo mapear as flutuações da atividade cerebral (imagiologia funcional) bem como ter uma boa resolução nas imagens de difusão (movimento de moléculas de água no volume cerebral). No entanto, esta técnica está associada a artefactos de suscetibilidade. Estes artefactos surgem quando existem interfaces entre duas amostras com suscetibilidades magnéticas diferentes como sejam o tecido biológico e o ar. De forma a minimizar esses artefactos é necessário reduzir as heterogeneidades do campo magnético principal B0 através de shimming. O presente trabalho focou-se em shimming ativo, no qual o campo magnético é mapeado com base num modelo composto por funções harmónicas esféricas e são calculadas as correntes a aplicar às bobinas de shimming. Essas bobinas geram um campo magnético que compensa as heterogeneidades presentes anteriormente. Convencionalmente, as tentativas para superar este problema envolvem a utilização do método disponibilizado no sistema de ressonância magnética, nas quais o campo é mapeado com base em projecções (ex: FASTMAP). Este método é de execução rápida mas apresenta duas desvantagens principais: em primeiro lugar, o utilizador tem um controlo reduzido sobre o processo; em segundo, as regiões nas quais o campo é mapeado não são definidas com base na anatomia de interesse. No contexto deste trabalho, o controlo sobre o processo é importante no sentido de ser possível aplicar exatamente a mesma metodologia a um grupo elevado de sujeitos. Por seu lado, o mapeamento com base na anatomia permite obter uma optimização mais precisa. Com o surgimento de novas tecnologias passou a ser possível fazer um mapeamento mais detalhado do campo magnético com técnicas baseadas em imagem ao invés de projecções. Estas técnicas envolvem a definição de um volume relacionado com a anatomia, e que é incluído na totalidade na optimização do campo. O principal objetivo deste trabalho foi desenvolver uma ferramenta de shimming baseado em imagem a fim de otimizar o campo magnético no contexto de imagens de EPI do cérebro neonatal e fetal. O cérebro do bebé sofre alterações na sua dimensão e forma durante o seu desenvolvimento desde a idade fetal até neonatal. Em cada uma dessas fases o bebé encontra-se cercado por um ambiente diferente que requere uma abordagem específica ao mesmo. Neste sentido, o trabalho desenvolvido foi dividido em três partes principais: descrição da estrutura necessária para a correta aplicação do shimming, shimming neonatal e shimming fetal. Em primeiro lugar, as limitações do shimming baseado em imagem foram estudadas e o algoritmo básico para aplicar o método foi testado. Nesta parte do trabalho foi demonstrado que os campos gerados pelas bobinas de shim presentes no equipamento de ressonância magnética são consistentes com as funções harmónicas esféricas que compõem o modelo aplicado. O efeito do movimento da cama do equipamento sobre a eficiência do shimming foi também estudada. Foi possível corrigir a informação do sistema de coordenadas que descrevem o mapa de campo B0 de forma a incluir o movimento da cama necessário para a obtenção das imagens em sujeitos fetais. A segunda parte do trabalho focou-se no desenvolvimento do shimming para o caso neonatal. Foi desenvolvida uma ferramenta para definição de uma região de interesse, unwrapping da fase e cálculo das correntes de shim. Esta foi desenvolvida em ambiente MATLAB. Nos recém-nascidos o shimming deve ser aplicado numa região de interesse restrita ao cérebro devido à presença da interface ar/tecido no escalpe do bebé. Assim, a definição da região de interesse consistiu principalmente na aplicação de um limiar a fim de binarizar a imagem de magnitude, ajustada pelo utilizador. Em simultâneo foi implementada uma técnica de exclusão dos olhos com base na anatomia dos diferentes planos. No seu conjunto o método apresentou-se flexível de forma a ser ajustado ao sujeito em estudo. Quando aplicado com a mesma metodologia (limiar e exclusão de olhos) o volume incluído foi semelhante entre bebés. O método de shimming foi avaliado com base em três medidas de dispersão do mapa de campo residual: largura a meia altura, desvio padrão dos pixéis no interior da região de interesse e o intervalo de frequências no interior do qual 95 % dos pixéis se encontravam. A utilização de diferentes medidas permitiu a avaliação do m´etodo em relação a diferentes aspetos. Este método foi aplicado a 52 participantes recém-nascidos com idade gestacional média de 39.8 ± 1.7 semanas. O cálculo das correntes de shim permitiu gerar um campo magnético que melhorou a homogeneidade do campo B0 no volume adquirido, sendo consistente com o previsto. Uma imagem média do campo residual foi calculada mostrando que existem duas regiões (occipital e pequenas regiões laterais) nas quais o campo magnético B0 apresenta ainda heterogeneidades. Por fim, os resultados indicam que este método melhorou o campo perto da periferia do cérebro quando comparado com o método convencional disponibilizado no equipamento. O shimming neonatal (shimming ótimo ou OIBS) foi utilizado como alicerce para a implementação de um método ajustado às características das aquisições fetais. Existem duas características principais que devem ser tidas em conta. Em primeiro lugar, os fetos encontram-se envoltos em líquido amniótico e tecido materno pelo que o ambiente no qual estão inseridos permite que a região de interesse seja definida de forma menos restrita. Em segundo lugar, o facto de a cabeça do feto ser pequena pode levar à existência de valores de corrente das bobinas de shim elevados. Essas correntes, principalmente associadas às bobinas de segunda ordem geram campos de magnitude elevada na região do tecido adiposo, o que altera a sua frequência de ressonância. Desta forma, as técnicas de supressão de gordura específicas em frequência são menos efetivas e a imagem de EPI apresenta artefactos. Assim, a ferramenta para shimming fetal incluiu a definição de uma região de interesse cilíndrica e um método de shimming baseado em imagem com limites lineares (shimming limitado ou CIBS) impostos com base na frequência de ressonância do tecido adiposo. O CIBS consistiu na aplicação de limites superiores e inferiores ([-300 100] Hz) para a frequência dos pixéis pertencentes à gordura após a aplicação do shimming. Adicionalmente, o impulso de radiofrequência utilizado para a supressão de gordura foi estudado a fim o otimizar para a sua utilização no contexto do shimming fetal. Para o estudo dos parâmetros do impulso de radiofrequência, os rins de dois voluntários adultos saudáveis foram utilizados como simulação do ambiente fetal, devido as semelhanças entre a localização e interface entre tecidos. Os métodos OIBS e CIBS foram aplicados em 6 grávidas saudáveis com idades gestacional média de 28±6 semanas. Os mapas de campo residuais mostraram que as técnicas eram semelhantes em termos de homogeneidade no interior da região de interesse definida como cérebro, mas a segunda (CIBS) apresentou melhores resultados na supressão de gordura. Como estudo do impulso de radiofrequência foi demonstrado que o desvio do impulso em cerca de 100 Hz no sentido da frequência de ressonância da água melhoraria a supressão de gordura sem detrimento do sinal da água. A utilização do novo método CIBS em simultâneo com um impulso de radiofrequência otimizado mostrou ser a melhor solução para homogeneizar o campo e suprimir a gordura. Em conclusão, as ferramentas apresentadas permitiram melhorar a qualidade das imagens de EPI da cabeça do feto e do recém-nascido no contexto do Developing Human Connectome Project. O shimming neonatal mostrou ser um método consistente que pode facilmente ser utilizado por parte da equipa clínica. A nível fetal foi apresentado um método que demonstra a capacidade de superar as limitações demonstradas pelas técnicas convencionais.The Developing Human Connectome Project (dHCP) aims to make major scientific progress by creating the first 4-dimensional connectome of early life. Echo planar imaging (EPI) is the main acquisition technique applied in functional and diffusion imaging, which are central to map the human brain. This technique allows fast acquisition of spatial information enabling volumetric coverage of the whole brain, but it is associated with susceptibility artefacts. In order to minimize those artefacts it is necessary to reduce main magnetic field B0 in homogeneities through shimming. Conventionally, the attempts to overcome this problem use the manufacturer’s default method. Unfortunately, with those techniques the user has little control over the process, and the regions within which the field is corrected are not anatomically based. The main objective of this project was to develop an image-based shimming tool to optimize the magnetic field in the context of EPI images adjusted to the neonatal and foetal brains. The babies’ brain suffers changes in dimension and shape during its development from foetal to neonatal age. In each one of those stages the baby is surrounded by a different environment which requires a distinct shimming approach. As a result, the work was divided into three main parts: framework description, neonatal shimming and foetal shimming. First, the limitations of image-based shimming were investigated, and the framework to apply the method was described. It was demonstrated that fields generated by shim coils were consistent with the spherical harmonic model applied. In addition, the coordinate information of the B0 field map was corrected in order to include the table displacement needed for foetal imaging. Second, a tool was developed for neonatal shimming. The tool included region-of-interest (ROI) definition, phase unwrapping and shim calculation. The ROI definition implemented was flexible in order to adjust to each subject under study. When applying this approach while keeping the same threshold/eye exclusion methodology the volume included was similar between babies. The shim calculation allowed to generate shim values that improved homogeneity of the magnetic field within the volume imaged. This method slightly improved the field near the brain’s margins when compared with the manufacturer’s default techniques. Finally, for foetal shimming the groundwork of the neonatal tool was adjusted to this cohort characteristics. The tool for foetal shimming included additional cylindrical ROI definition and constrained image-based shimming. The constrained shimming allowed to account for the mother’s adipose tissue which in the presence of high shim values can lead to imperfect fat suppression. Along with the implementation of shimming tools, the radio frequency pulse used for fat suppression was studied. The new constrained image-based shimming showed similar results in terms of field homogeneity within the fetus’ brain when compared with the optimal image based shimming, with improvement of fat suppression that is enhanced when simultaneously used with the optimized fat suppression radiofrequency pulse

    Commensurate Stripes and Phase Coherence in Manganites Revealed with Cryogenic Scanning Transmission Electron Microscopy

    Get PDF
    Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map at atomic resolution the nature of incommensurate order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼\sim 93K). In diffraction, the ordering wavevector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the underlying ordered state is lattice-commensurate at both temperatures. The cations undergo picometer-scale (∼\sim 6-11 pm) transverse displacements, which suggests that charge-lattice coupling is strong and hence favors lattice-locked modulations. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93K. Such local phase variations not only govern the long range correlations of the charge-ordered state, but also results in apparent shifts in the ordering wavevector. These atomically-resolved observations underscore the importance of lattice coupling and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides

    Automatic Spatial Calibration of Ultra-Low-Field MRI for High-Accuracy Hybrid MEG--MRI

    Full text link
    With a hybrid MEG--MRI device that uses the same sensors for both modalities, the co-registration of MRI and MEG data can be replaced by an automatic calibration step. Based on the highly accurate signal model of ultra-low-field (ULF) MRI, we introduce a calibration method that eliminates the error sources of traditional co-registration. The signal model includes complex sensitivity profiles of the superconducting pickup coils. In ULF MRI, the profiles are independent of the sample and therefore well-defined. In the most basic form, the spatial information of the profiles, captured in parallel ULF-MR acquisitions, is used to find the exact coordinate transformation required. We assessed our calibration method by simulations assuming a helmet-shaped pickup-coil-array geometry. Using a carefully constructed objective function and sufficient approximations, even with low-SNR images, sub-voxel and sub-millimeter calibration accuracy was achieved. After the calibration, distortion-free MRI and high spatial accuracy for MEG source localization can be achieved. For an accurate sensor-array geometry, the co-registration and associated errors are eliminated, and the positional error can be reduced to a negligible level.Comment: 11 pages, 8 figures. This work is part of the BREAKBEN project and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 68686
    • …
    corecore