12,353 research outputs found

    Strong Interactions of Single Atoms and Photons near a Dielectric Boundary

    Get PDF
    Modern research in optical physics has achieved quantum control of strong interactions between a single atom and one photon within the setting of cavity quantum electrodynamics (cQED). However, to move beyond current proof-of-principle experiments involving one or two conventional optical cavities to more complex scalable systems that employ N >> 1 microscopic resonators requires the localization of individual atoms on distance scales < 100 nm from a resonator's surface. In this regime an atom can be strongly coupled to a single intracavity photon while at the same time experiencing significant radiative interactions with the dielectric boundaries of the resonator. Here, we report an initial step into this new regime of cQED by way of real-time detection and high-bandwidth feedback to select and monitor single Cesium atoms localized ~100 nm from the surface of a micro-toroidal optical resonator. We employ strong radiative interactions of atom and cavity field to probe atomic motion through the evanescent field of the resonator. Direct temporal and spectral measurements reveal both the significant role of Casimir-Polder attraction and the manifestly quantum nature of the atom-cavity dynamics. Our work sets the stage for trapping atoms near micro- and nano-scopic optical resonators for applications in quantum information science, including the creation of scalable quantum networks composed of many atom-cavity systems that coherently interact via coherent exchanges of single photons.Comment: 8 pages, 5 figures, Supplemental Information included as ancillary fil

    Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    Get PDF
    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures

    Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.

    Get PDF
    The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases

    Antibunched Emission of Photon-Pairs via Quantum Zeno Blockade

    Full text link
    We propose a new methodology, namely "quantum Zeno blockade," for managing light scattering at a few-photon level in general nonlinear-optical media, such as crystals, fibers, silicon microrings, and atomic vapors. Using this tool, antibunched emission of photon pairs can be achieved, leading to potent quantum-optics applications such as deterministic entanglement generation without the need for heralding. In a practical implementation using an on-chip toroidal microcavity immersed in rubidium vapor, we estimate that high-fidelity entangled photons can be produced on-demand at MHz rates or higher, corresponding to an improvement of ≳107\gtrsim10^7 times from the state-of-the-art.Comment: to appear in Phys. Rev. Let

    Automated reasoning in metabolic networks with inhibition

    Get PDF
    International audienceThe use of artificial intelligence to represent and reason about metabolic networks has been widely investigated due to the complexity of their imbrication. Its main goal is to determine the catalytic role of genomes and their interference in the process. This paper presents a logical model for metabolic pathways capable of describing both positive and negative reactions (activations and inhibitions) based on a fragment of first order logic. We also present a translation procedure that aims to transform first order formulas into quantifier free formulas, creating an efficient automated deduction method allowing us to predict results by deduction and infer reactions and proteins states by abductive reasoning

    ERK1/2 signaling dominates over RhoA signaling in regulating early changes in RNA expression induced by endothelin-1 in neonatal rat cardiomyocytes

    Get PDF
    Cardiomyocyte hypertrophy is associated with changes in gene expression. Extracellular signal-regulated kinases 1/2 (ERK1/2) and RhoA [activated by hypertrophic agonists (e.g. endothelin-1)] regulate gene expression and are implicated in the response, but their relative significance in regulating the cardiomyocyte transcriptome is unknown. Our aim was to establish the significance of ERK1/2 and/or RhoA in the early cardiomyocyte transcriptomic response to endothelin-1.Cardiomyocytes were exposed to endothelin-1 (1 h) with/without PD184352 (to inhibit ERK1/2) or C3 transferase (C3T, to inhibit RhoA). RNA expression was analyzed using microarrays and qPCR. ERK1/2 signaling positively regulated approximately 65% of the early gene expression response to ET-1 with a small (approximately 2%) negative effect, whereas RhoA signaling positively regulated approximately 10% of the early gene expression response to ET-1 with a greater (approximately 14%) negative contribution. Of RNAs non-responsive to endothelin-1, 66 or 448 were regulated by PD184352 or C3T, respectively, indicating that RhoA had a more significant effect on baseline RNA expression. mRNAs upregulated by endothelin-1 encoded a number of receptor ligands (e.g. Ereg, Areg, Hbegf) and transcription factors (e.g. Abra/Srf) that potentially propagate the response.ERK1/2 dominates over RhoA in the early transcriptomic response to endothelin-1. RhoA plays a major role in maintaining baseline RNA expression but, with upregulation of Abra/Srf by endothelin-1, RhoA may regulate changes in RNA expression over longer times. Our data identify ERK1/2 as a more significant node than RhoA in regulating the early stages of cardiomyocyte hypertrophy

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    • …
    corecore