3,924 research outputs found

    An Object-Oriented Approach to Knowledge Representation in a Biomedical Domain

    Get PDF
    An object-oriented approach has been applied to the different stages involved in developing a knowledge base about insulin metabolism. At an early stage the separation of terminological and assertional knowledge was made. The terminological component was developed by medical experts and represented in CORE. An object-oriented knowledge acquisition process was applied to the assertional knowledge. A frame description is proposed which includes features like states and events, inheritance and collaboration. States and events are formalized with qualitative calculus. The terminological knowledge was very useful in the development of the assertional component. It assisteed in understanding the problem domain, and in the implementation stage, it assisted in building good inheritance hierarchies

    Ontology Building of Manufacturing Quality Knowledge for Design Decision Support

    Get PDF
    This work was funded by National Natural Science Foundation of China (No: 70472066, 70771091), the project of Bureau of Science, Technology and Industry for National Defence, China (No. Z142008A001), the NPU Foundation for Humanities, Social Science, and Management Science Development (No. RW200817), which are gratefully acknowledged.Manufacturing knowledge on product quality is a kind of typical knowledge for supporting design decisions. In order to clearly identify and understand design decisions and their knowledge needs on manufacturing quality, an ontology of design decisions and manufacturing quality knowledge is developed. The methodology and tool used for the development of the proposed ontology is firstly introduced. The design decisions are organized along with five main design phases ranging from planning and task clarification, conceptual design, embodiment design to detail design. The knowledge needs of different design decisions, especially on the manufacturing quality knowledge, are analyzed through competition questions. Then, the ontology is built in the form of a hierarchical structure through the proposed methodology and ontology editor. Based on the developed ontology, further instances of the classes in the ontology can be filled as detailed knowledge, and can be accumulated for further construction of knowledge base

    Issues on packet transmissioin strategies in a TDD-TD/CDMA scenario

    Get PDF
    This paper presents a packet transmission scheme that deals with the problems of a TDD CDMA scenario with different levels of frame structure asymmetry in adjacent base stations by distributing the users in the slots depending on their Time Advance. A multiple access protocol and a scheduling algorithm are also proposed to provide a certain degree of Quality of Service.Peer ReviewedPostprint (published version

    The Foundational Model of Anatomy Ontology

    Get PDF
    Anatomy is the structure of biological organisms. The term also denotes the scientific discipline devoted to the study of anatomical entities and the structural and developmental relations that obtain among these entities during the lifespan of an organism. Anatomical entities are the independent continuants of biomedical reality on which physiological and disease processes depend, and which, in response to etiological agents, can transform themselves into pathological entities. For these reasons, hard copy and in silico information resources in virtually all fields of biology and medicine, as a rule, make extensive reference to anatomical entities. Because of the lack of a generalizable, computable representation of anatomy, developers of computable terminologies and ontologies in clinical medicine and biomedical research represented anatomy from their own more or less divergent viewpoints. The resulting heterogeneity presents a formidable impediment to correlating human anatomy not only across computational resources but also with the anatomy of model organisms used in biomedical experimentation. The Foundational Model of Anatomy (FMA) is being developed to fill the need for a generalizable anatomy ontology, which can be used and adapted by any computer-based application that requires anatomical information. Moreover it is evolving into a standard reference for divergent views of anatomy and a template for representing the anatomy of animals. A distinction is made between the FMA ontology as a theory of anatomy and the implementation of this theory as the FMA artifact. In either sense of the term, the FMA is a spatial-structural ontology of the entities and relations which together form the phenotypic structure of the human organism at all biologically salient levels of granularity. Making use of explicit ontological principles and sound methods, it is designed to be understandable by human beings and navigable by computers. The FMA’s ontological structure provides for machine-based inference, enabling powerful computational tools of the future to reason with biomedical data
    • …
    corecore