20,175 research outputs found

    GraphR: Accelerating Graph Processing Using ReRAM

    Full text link
    This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suit- able for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01x (up to 132.67x) speedup and a 33.82x energy saving on geometric mean compared to a CPU baseline system. Com- pared to GPU, GRAPHR achieves 1.69x to 2.19x speedup and consumes 4.77x to 8.91x less energy. GRAPHR gains a speedup of 1.16x to 4.12x, and is 3.67x to 10.96x more energy efficiency compared to PIM-based architecture.Comment: Accepted to HPCA 201

    Parallel Algorithms for Summing Floating-Point Numbers

    Full text link
    The problem of exactly summing n floating-point numbers is a fundamental problem that has many applications in large-scale simulations and computational geometry. Unfortunately, due to the round-off error in standard floating-point operations, this problem becomes very challenging. Moreover, all existing solutions rely on sequential algorithms which cannot scale to the huge datasets that need to be processed. In this paper, we provide several efficient parallel algorithms for summing n floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. We present algorithms in PRAM, external-memory, and MapReduce models, and we also provide an experimental analysis of our MapReduce algorithms, due to their simplicity and practical efficiency.Comment: Conference version appears in SPAA 201

    Shared-memory Graph Truss Decomposition

    Full text link
    We present PKT, a new shared-memory parallel algorithm and OpenMP implementation for the truss decomposition of large sparse graphs. A k-truss is a dense subgraph definition that can be considered a relaxation of a clique. Truss decomposition refers to a partitioning of all the edges in the graph based on their k-truss membership. The truss decomposition of a graph has many applications. We show that our new approach PKT consistently outperforms other truss decomposition approaches for a collection of large sparse graphs and on a 24-core shared-memory server. PKT is based on a recently proposed algorithm for k-core decomposition.Comment: 10 pages, conference submissio

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today
    corecore