2,680 research outputs found

    Stability Properties of the Adaptive Horizon Multi-Stage MPC

    Full text link
    This paper presents an adaptive horizon multi-stage model-predictive control (MPC) algorithm. It establishes appropriate criteria for recursive feasibility and robust stability using the theory of input-to-state practical stability (ISpS). The proposed algorithm employs parametric nonlinear programming (NLP) sensitivity and terminal ingredients to determine the minimum stabilizing prediction horizon for all the scenarios considered in the subsequent iterations of the multi-stage MPC. This technique notably decreases the computational cost in nonlinear model-predictive control systems with uncertainty, as they involve solving large and complex optimization problems. The efficacy of the controller is illustrated using three numerical examples that illustrate a reduction in computational delay in multi-stage MPC.Comment: Accepted for publication in Elsevier's Journal of Process Contro

    Constrained robust model predictive control for time-delay descriptor systems with linear fractional uncertainty

    Get PDF
    This paper addresses the robust model predictive control (MPC) for a class of time delay descriptor systems with linear fractional uncertainty and input constrains. The systems are transferred to the piecewise continuous descriptor systems and a piecewise constant control sequence is calculated by minimizing the worst-case quadratic objective function. At each sampling internal, by means of Lyapunov theory and optimization theory, the optimal problem with infinite horizon objective function is reduced to a convex optimization problem involving linear matrix inequalities. The sufficient conditions for the existence of the state feedback control are derived and expressed as linear matrix inequalities. Further, an iterative model predictive control algorithm is proposed for the on-line synthesis of state feedback controllers with the conditions guaranteeing that the closed-loop descriptor systems are regular, impulse-free and robust stable. Finally, a numerical example is presented to show the efficiency of the proposed approach

    Analysis and design of model predictive control frameworks for dynamic operation -- An overview

    Full text link
    This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging from tracking of reference signals to the general economic operation of a plant under online changing time-varying operating conditions. We focus on the particular challenges that arise when dealing with such more general control goals and present methods that have emerged in the literature to address these issues. The goal of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also critically assess the applicability of the different research directions, discussing limitations and opportunities for further researc

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active
    corecore