14 research outputs found

    High-resolution quantitative MRI of multiple sclerosis spinal cord lesions

    Get PDF
    PURPOSE: Validation of quantitative MR measures for myelin imaging in the postmortem multiple sclerosis spinal cord. METHODS: Four fixed spinal cord samples were imaged first with a 3T clinical MR scanner to identify areas of interest for scanning, and then with a 7T small bore scanner using a multicomponent‐driven equilibrium single‐pulse observation of T(1) and T(2) protocol to produce apparent proton density, T(1), T(2), myelin water, intracellular water, and free‐water fraction maps. After imaging, the cords were sectioned and stained with histological markers (hematoxylin and eosin, myelin basic protein, and neurofilament protein), which were quantitatively compared with the MR maps. RESULTS: Excellent correspondence was found between high‐resolution MR parameter maps and histology, particularly for apparent proton density MRI and myelin basic protein staining. CONCLUSION: High‐resolution quantitative MRI of the spinal cord provides biologically meaningful measures, and could be beneficial to diagnose and track multiple sclerosis lesions in the spinal cord

    High-resolution quantitative MRI of multiple sclerosis spinal cord lesions

    Get PDF
    Purpose: Validation of quantitative MR measuresfor myelin imaging in the postmortem multiple sclerosis spinal cord. Methods: Four fixed spinal cord samples were imaged first with a 3T clinical MR scannerto identify areas of interest forscanning, and then with a 7T small bore scanner using a multicomponent-driven equilibrium single-pulse observation of T1 and T2 protocol to produce apparent proton density, T1, T2, myelin water, intracellular water, and free-water fraction maps. After imaging, the cords were sectioned and stained with histological markers (hematoxylin and eosin, myelin basic protein, and neurofilament protein), which were quantitatively compared with the MR maps. Results: Excellent correspondence was found between high-resolution MR parameter maps and histology, particularly for apparent proton density MRI and myelin basic protein staining. Conclusion: High-resolution quantitative MRI of the spinal cord provides biologically meaningful measures, and could be beneficial to diagnose and track multiple sclerosis lesions in the spinal cord

    Towards in vivo g-ratio mapping using MRI: unifying myelin and diffusion imaging

    Get PDF
    The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. This is the second review on the topic of g-ratio mapping using MRI. As such, it summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. Using simulations based on recently published data, this review demonstrates the relevance of the calibration step for three myelin-markers (macromolecular tissue volume, myelin water fraction, and bound pool fraction). It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the potential of many novel techniques yet to be investigated.Comment: Will be published as a review article in Journal of Neuroscience Methods as parf of the Special Issue with Hu Cheng and Vince Calhoun as Guest Editor

    Virtual histology of multi-modal magnetic resonance imaging of cerebral cortex in young men

    Get PDF
    Neurobiology underlying inter-regional variations - across the human cerebral cortex - in measures derived with multi-modal magnetic resonance imaging (MRI) is poorly understood. Here, we characterize inter-regional variations in a large number of such measures, including T1 and T2 relaxation times, myelin water fraction (MWF), T1w/T2w ratio, mean diffusivity (MD), fractional anisotropy (FA), magnetization transfer ratio (MTR) and cortical thickness. We then employ a virtual-histology approach and relate these inter-regional profiles to those in cell-specific gene expression. Virtual histology revealed that most MRI-derived measures, including T1, T2 relaxation time, MWF, T1w/T2w ratio, MTR, FA and cortical thickness, are associated with expression profiles of genes specific to CA1 pyramidal cells; these genes are enriched in biological processes related to dendritic arborisation. In addition, T2 relaxation time, MWF and T1w/T2w ratio are associated with oligodendrocyte-specific gene-expression profiles, supporting their use as measures sensitive to intra-cortical myelin. MWF contributes more variance than T1w/T2w ratio to the mean oligodendrocyte expression profile, suggesting greater sensitivity to myelin. These cell-specific MRI associations may help provide a framework for determining which MRI sequences to acquire in studies with specific neurobiological hypotheses

    Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging

    Get PDF
    BACKGROUND: The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD: This is the second review on the topic of g-ratio mapping using MRI. RESULTS: This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS: Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS: We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated

    Quantitative MRI in leukodystrophies

    Get PDF
    Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies

    Estimating axon conduction velocity in vivo from microstructural MRI

    Get PDF
    The conduction velocity (CV) of action potentials along axons is a key neurophysiological property central to neural communication. The ability to estimate CV in humans in vivo from non-invasive MRI methods would therefore represent a significant advance in neuroscience. However, there are two major challenges that this paper aims to address: (1) Much of the complexity of the neurophysiology of action potentials cannot be captured with currently available MRI techniques. Therefore, we seek to establish the variability in CV that can be captured when predicting CV purely from parameters that have been reported to be estimatable from MRI: inner axon diameter (AD) and g-ratio. (2) errors inherent in existing MRI-based biophysical models of tissue will propagate through to estimates of CV, the extent to which is currently unknown. Issue (1) is investigated by performing a sensitivity analysis on a comprehensive model of axon electrophysiology and determining the relative sensitivity to various morphological and electrical parameters. The investigations suggest that 85% of the variance in CV is accounted for by variation in AD and g-ratio. The observed dependency of CV on AD and g-ratio is well characterised by the previously reported model by Rushton. Issue (2) is investigated through simulation of diffusion and relaxometry MRI data for a range of axon morphologies, applying models of restricted diffusion and relaxation processes to derive estimates of axon volume fraction (AVF), AD and g-ratio and estimating CV from the derived parameters. The results show that errors in the AVF have the biggest detrimental impact on estimates of CV, particularly for sparse fibre populations (AVF <0.3 ). For our equipment set-up and acquisition protocol, CV estimates are most accurate (below 5% error) where AVF is above 0.3, g-ratio is between 0.6 and 0.85 and AD is high (above 4μm ). CV estimates are robust to errors in g-ratio estimation but are highly sensitive to errors in AD estimation, particularly where ADs are small. We additionally show CV estimates in human corpus callosum in a small number of subjects. In conclusion, we demonstrate accurate CV estimates are possible in regions of the brain where AD is sufficiently large. Problems with estimating ADs for smaller axons presents a problem for estimating CV across the whole CNS and should be the focus of further study

    Chronic Neurological Impairment in Patients with Thrombotic Thrombocytopenic Purpura: Findings in Quantitative MRI

    Get PDF
    Thrombotic thrombocytopenic purpura (TTP) is a life-threatening, microvascular blood disorder that affects approximately 5 people per million per year. The disorder is characterized by insufficient activity in ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats 13), which is an important enzyme in hemostasis because it prevents thrombosis. Along with blood clotting, other predominant symptoms are fever, anaemia, kidney failure, and neurological changes. Neurological changes may include confusion and decreased levels of consciousness, as well as depression and increased risk of seizures or stroke. However, little is known about the general pathology of these neurological changes and this forms the motivation for this research. An observational study using a comprehensive MRI protocol was evaluated in 13 patients and compared to results from assessments of depression and cognition. Despite prolonged remission, there is evidence of persistent neurocognitive decline as manifested in higher scores of depression and widespread white matter lesions

    Quantitative methods in high field MRI

    Get PDF
    The increased signal-to-noise ratio available at high magnetic field makes possible the acquisition of clinically useful MR images either at higher resolution or for quantitative methods. The work in this thesis is focused on the development of quantitative imaging methods used to overcome difficulties due to high field MRI systems (> 3T). The protocols developed and presented here have been tested on various studies aiming at discriminating tissues based on their NMR properties. The quantities of interest in this thesis are the longitudinal relaxation time T1, as well as the magnetization transfer process, particularly the chemical exchange phenomenon involving amide protons which is highlighted particularly well at 7T under specific conditions. Both quantities (T1 and amide proton transfer) are related to the underlying structure of the tissues in-vivo, especially inside the white matter of the brain. While a standard weighted image at high resolution can provide indices of the extent of the pathology, a robust measure of the NMR properties of brain tissues can detect earlier abnormalities. A method based on a 3D Turbo FLASH readout and measuring reliably the T1 in-vivo for clinical studies at 7T is first presented. The other major part of this thesis presents magnetization transfer and chemical exchange phenomena. First a quantitative method is investigated at 7T, leading to a new model for exchange as well as contrast optimization possibility for imaging. Results using those methods are presented and applied in clinical setting, the main focus being to image reliably the brain of both healthy subjects and Multiple Sclerosis patients to look at myelin structures
    corecore