437 research outputs found

    Multimedia Content Distribution in Hybrid Wireless Networks using Weighted Clustering

    Get PDF
    Fixed infrastructured networks naturally support centralized approaches for group management and information provisioning. Contrary to infrastructured networks, in multi-hop ad-hoc networks each node acts as a router as well as sender and receiver. Some applications, however, requires hierarchical arrangements that-for practical reasons-has to be done locally and self-organized. An additional challenge is to deal with mobility that causes permanent network partitioning and re-organizations. Technically, these problems can be tackled by providing additional uplinks to a backbone network, which can be used to access resources in the Internet as well as to inter-link multiple ad-hoc network partitions, creating a hybrid wireless network. In this paper, we present a prototypically implemented hybrid wireless network system optimized for multimedia content distribution. To efficiently manage the ad-hoc communicating devices a weighted clustering algorithm is introduced. The proposed localized algorithm deals with mobility, but does not require geographical information or distances.Comment: 2nd ACM Workshop on Wireless Multimedia Networking and Performance Modeling 2006 (ISBN 1-59593-485

    Traffic agents for improving QoS in mixed infrastructure and ad hoc modes wireless LAN

    Get PDF
    As an important complement to infrastructured wireless networks, mobile ad hoc networks (MANET) are more flexible in providing wireless access services, but more difficult in meeting different quality of service (QoS) requirements for mobile customers. Both infrastructure and ad hoc network structures are supported in wireless local area networks (WLAN), which can offer high data-rate wireless multimedia services to the mobile stations (MSs) in a limited geographical area. For those out-of-coverage MSs, how to effectively connect them to the access point (AP) and provide QoS support is a challenging issue. By mixing the infrastructure and the ad hoc modes in WLAN, we propose in this paper a new coverage improvement scheme that can identify suitable idle MSs in good service zones as traffic agents (TAs) to relay traffic from those out-of-coverage MSs to the AP. The service coverage area of WLAN is then expanded. The QoS requirements (e.g., bandwidth) of those MSs are considered in the selection process of corresponding TAs. Mathematical analysis, verified by computer simulations, shows that the proposed TA scheme can effectively reduce blocking probability when traffic load is light

    Distributed scheduling with end-to-end compensation in multihop ad hoc networks

    Get PDF
    In this paper, we investigate the problem of providing QoS to end-to-end flows in multihop ad hoc networks with channel errors through packet scheduling. Each flow is associated with some QoS requirement, which is requested and granted in the form of a desired service rate. The achieved rate is estimated at the destination and fed back to the source periodically. Both the desired rate and achieved rate of a multihop flow are piggybacked on the packets of the flow and propagated from the source node to all its downstream relaying nodes. With such information, a compensation-capable scheduling algorithm originally designed for infrastructured wireless networks can be adapted to each ad hoc node for compensating a lagging flow, i.e., a flow with the achieved rate smaller than the desired rate. We propose the feedback and propagation mechanism as an end-to-end compensation framework, which is the key contribution of this work. We use BGFS-EBA, a scheduling algorithm for infrastructured wireless networks, as an example to demonstrate how such an algorithm is adapted to ad hoc networks within the proposed framework. Our simulation results show that the proposed mechanism maintains outcome fairness and compensate flows that suffer sporadic bursty channel errors effectively. © 2008 IEEE.published_or_final_versionThe 19th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15-18 September 2008. In Proceedings of 19th IEEE PIMRC, 2008, p. 1-

    Messiah: An ITS drive safety application

    Get PDF
    This article describes a novel safety application based on the open source navigation software OsmAnd, which runs on the Android platform. The application offers vehicles with "smart navigation", and maintains a network of the vehicles that use our application. The process of network creation and maintenance is important as our application enables vehicles to communicate with one another to exchange useful information. The main function of the application is to inform vehicles of relevant vehicles approaching, termed as "administrative vehicles" in this article, and include ambulances, police cars and fire brigades. Based on the received information, our application notifies the driver, who can now take navigation decisions based on it. While developing the application, problems were found when attempting to create an Ad-hoc network. A solution to the problem of managing the Ad-hoc network has been proposed and is under development

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Performance evaluation of wireless IEEE 802.11(b) used for ad-hoc networks in an e-learning classroom network

    Get PDF
    Evaluation of wireless networks for performance evaluation is a popular research area and a wealth of literature exists in this area. Wireless networks in infrastructure mode as well as Ad-hoc networks such as MANETs are considered extensively. Simulation results are provided for E-learning scenarios for cases where wireless networks in infrastructure mode are employed, however the possibilities of using ad- hoc networks and performance evaluation of e-learning scenarios with ad hoc networks are not considered. This paper presents an evaluation of the performances for wireless Ad-hoc networks employed in typical e-learning environment by using the OPNET modeller. Numerical simulation results, discussions and comparisons are provided. The results can be of great help for optimisation studies in typical e-learning environments. The performance issues are considered together with scalability concerns

    Distributed opportunistic scheduling in multihop wireless ad hoc networks

    Get PDF
    In this paper, we introduce a framework for distributed opportunistic scheduling in multihop wireless ad hoc networks. With the proposed framework, one can take a scheduling algorithm originally designed for infrastructure-based wireless networks and adapt it to multihop ad hoc networks. The framework includes a wireless link state estimation mechanism, a medium access control (MAC) protocols and a MAC load control mechanism. The proposed link state estimation mechanism accounts for the latest results of packet transmissions on each wireless link. To improve robustness and provide service isolation during channel errors, the MAC protocol should not make any packet retransmissions but only report the transmission result to the scheduler. We modify IEEE 802.11 to fulfill these requirements. The MAC load control mechanism improves the system robustness. With link state information and the modified IEEE 802.11 MAC, we use BGFS-EBA, an opportunistic scheduling algorithm for infrastructured wireless networks, as an example to demonstrate how such an algorithm is converted into its distributed version within the proposed framework. The simulation results show that our proposed method can provide robust outcome fairness in the presence of channel errors. ©2008 IEEE.published_or_final_versio
    • …
    corecore