82 research outputs found

    Land & Localize: An Infrastructure-free and Scalable Nano-Drones Swarm with UWB-based Localization

    Full text link
    Relative localization is a crucial functional block of any robotic swarm. We address it in a fleet of nano-drones characterized by a 10 cm-scale form factor, which makes them highly versatile but also strictly limited in their onboard power envelope. State-of-the-Art solutions leverage Ultra-WideBand (UWB) technology, allowing distance range measurements between peer nano-drones and a stationary infrastructure of multiple UWB anchors. Therefore, we propose an UWB-based infrastructure-free nano-drones swarm, where part of the fleet acts as dynamic anchors, i.e., anchor-drones (ADs), capable of automatic deployment and landing. By varying the Ads' position constraint, we develop three alternative solutions with different trade-offs between flexibility and localization accuracy. In-field results, with four flying mission-drones (MDs), show a localization root mean square error (RMSE) spanning from 15.3 cm to 27.8 cm, at most. Scaling the number of MDs from 4 to 8, the RMSE marginally increases, i.e., less than 10 cm at most. The power consumption of the MDs' UWB module amounts to 342 mW. Ultimately, compared to a fixed-infrastructure commercial solution, our infrastructure-free system can be deployed anywhere and rapidly by taking 5.7 s to self-localize 4 ADs with a localization RMSE of up to 12.3% in the most challenging case with 8 MDs

    A Study on UWB-Aided Localization for Multi-UAV Systems in GNSS-Denied Environments

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have seen an increased penetration in industrial applications in recent years. Some of those applications have to be carried out in GNSS-denied environments. For this reason, several localization systems have emerged as an alternative to GNSS-based systems such as Lidar and Visual Odometry, Inertial Measurement Units (IMUs), and over the past years also UWB-based systems. UWB technology has increased its popularity in the robotics field due to its high accuracy distance estimation from ranging measurements of wireless signals, even in non-line-of-sight measurements. However, the applicability of most of the UWB-based localization systems is limited because they rely on a fixed set of nodes, named anchors, which requires prior calibration. In this thesis, we present a localization system based on UWB technology with a built-in collaborative algorithm for the online autocalibration of the anchors. This autocalibration method, enables the anchors to be movable and thus, to be used in ad-doc and dynamic deployments. The system is based on Decawave's DWM1001 UWB transceivers. Compared to Decawave's autopositioning algorithm we drastically reduce the calibration time while increasing accuracy. We provide both experimental measurements and simulation results to demonstrate the usability of this algorithm. We also present a comparison between our UWB-based and other non-GNSS localization systems for UAVs positioning in indoor environments

    Indoor Localization Techniques Based on Wireless Sensor Networks

    Get PDF

    Decentralized Collaborative Localization Using Ultra-Wideband Ranging

    Get PDF
    This thesis summarizes the development of a collaborative localization algorithm simulation environment and the implementation of collaborative localization using Ultra-Wideband ranging in autonomous vehicles. In the developed simulation environment, multi-vehicle scenarios are testable with various sensor combinations and configurations. The simulation emulates the networking required for collaborative localization and serves as a platform for evaluating algorithm performance using Monte Carlo analysis. Monte-Carlo simulations were run using a number of situations and vehicles to test the efficacy of UWB sensors in decentralized collaborative localization as well as landmark measurements within an extended Kalman filter. Improvements from adding Ultra-Wideband ranging were shown in all simulated environments, with landmarks offering additional improvements to collaborative localization, and with the most significant accuracy improvements seen in GNSS-denied environments. Physical experiments were run using a by-wire GEM e6 from Autonomous Stuff in an urban environment in both collaborative and landmark setups. Due to higher than expected INS certainty, adding UWB measurements showed smaller improvements than simulations. Improvements of 9.2 to 12.1% were shown through the introduction of Ultra-Wideband ranging measurements in a decentralized collaborative localization algorithm. Improvements of 30.6 to 83.3% were shown in using UWB ranging measurements to landmarks in an Extended Kalman Filter for street crossing and tunnel environments respectively. These results are similar to the simulated data, and are promising in showing the efficacy of adding UWB ranging sensors to cars for collaborative and landmark localization, especially in GNSS-denied environments. In the future, additional moving vehicles with additional tags will be tested and further evaluations of the UWB ranging modules will be performed

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment

    Get PDF
    Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included

    Progress toward multi‐robot reconnaissance and the MAGIC 2010 competition

    Full text link
    Tasks like search‐and‐rescue and urban reconnaissance benefit from large numbers of robots working together, but high levels of autonomy are needed to reduce operator requirements to practical levels. Reducing the reliance of such systems on human operators presents a number of technical challenges, including automatic task allocation, global state and map estimation, robot perception, path planning, communications, and human‐robot interfaces. This paper describes our 14‐robot team, which won the MAGIC 2010 competition. It was designed to perform urban reconnaissance missions. In the paper, we describe a variety of autonomous systems that require minimal human effort to control a large number of autonomously exploring robots. Maintaining a consistent global map, which is essential for autonomous planning and for giving humans situational awareness, required the development of fast loop‐closing, map optimization, and communications algorithms. Key to our approach was a decoupled centralized planning architecture that allowed individual robots to execute tasks myopically, but whose behavior was coordinated centrally. We will describe technical contributions throughout our system that played a significant role in its performance. We will also present results from our system both from the competition and from subsequent quantitative evaluations, pointing out areas in which the system performed well and where interesting research problems remain. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93532/1/21426_ftp.pd
    • 

    corecore