1,258 research outputs found

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Fog Computing for Detecting Vehicular Congestion, An Internet of Vehicles based Approach: A review

    Get PDF
    Vehicular congestion is directly impacting the efficiency of the transport sector. A wireless sensor network for vehicular clients is used in Internet of Vehicles based solutions for traffic management applications. It was found that vehicular congestion detection by using Internet of Vehicles based connected vehicles technology are practically feasible for congestion handling. It was found that by using Fog Computing based principles in the vehicular wireless sensor network, communication in the system can be improved to support larger number of nodes without impacting performance. In this paper, connected vehicles technology based vehicular congestion identification techniques are studied. Computing paradigms that can be used for the vehicular network are studied to develop a practically feasible vehicular congestion detection system that performs accurately for a large coverage area and multiple scenarios. The designed system is expected to detect congestion to meet traffic management goals that are of primary importance in intelligent transportation systems

    Wireless Networking for Vehicle to Infrastructure Communication and Automatic Incident Detection

    Get PDF
    Vehicular wireless communication has recently generated wide interest in the area of wireless network research. Automatic Incident Detection (AID), which is the recent focus of research direction in Intelligent Transportation System (ITS), aims to increase road safety. These advances in technology enable traffic systems to use data collected from vehicles on the road to detect incidents. We develop an automatic incident detection method that has a significant active road safety application for alerting drivers about incidents and congestion. Our method for detecting traffic incidents in a highway scenario is based on the use of distance and time for changing lanes along with the vehicle speed change over time. Numerical results obtained from simulating our automatic incident detection technique suggest that our incident detection rate is higher than that of other techniques such as integrated technique. probabilistic technique and California Algorithm. We also propose a technique to maximize the number of vehicles aware of Road Side Units (RSUs) in order to enhance the accuracy of our AID technique. In our proposed Method. IEEE 802.11 standard is used at RSUs with multiple antennas to assign each lane a specific channel. To validate our proposed approach. we present both analytical and simulation scenarios. The empirical values which are obtained from both analytical and simulation results have been compared to show their consistency. Results indicate that the IEEE 802.11 standard with its beaconing mechanism can be successfully used for Vehicle to Infrastructure (V2I) communications
    • …
    corecore