108,523 research outputs found

    A Pattern Based Approach to Defining the Dynamic Infrastructure of UML 2.0

    Get PDF
    The 2U Consortium has recently submitted a proposal for the definition of the UML 2.0 infrastructure. This uses an innovative technique of rapidly “stamping out” the definition using a small number of patterns commonly found in software architecture. The patterns, their instantiation, and any further language details are described using precise class diagrams and OCL, this enables the definition to be easily understood. The main focus of the 2U approach is on the static part of the definition. A further concern when modelling software, using languages such as the UML, is describing the dynamic behaviour of the system over time. The contribution of this paper is to provide a template that can be used to “stamp out” the dynamic part of the UML 2.0 infrastructure. We argue for the suitability of the dynamic template because it makes little commitment to concrete abstractions and can, therefore, be used to support a broad spectrum of behavioural languages

    Unambiguous UML submission to UML 2 infrastructure RFP (ad/00-09-01).

    Get PDF
    This is a response to the UML 2.0 Request for Proposals on Infrastructure (ad/00-09-01). We propose an architecture for the definition of UML 2.0 which supports the layered and extensible definition of UML as a family of languages, and depends on the use of package extension (composition) and package template mechanisms in the metamodelling language. This submission defines that architecture and populates it with the definition of a core foundation for the definition of structural and behavioural modelling constructs for UML. Chapter 3 (“Language Architecture”) identifies all those parts of the architecture defined in any given version of this document

    A pattern based approach to defining the dynamic infrastructure of UML 2.0.

    Get PDF
    The 2U Consortium has recently submitted a proposal for the definition of the UML 2.0 infrastructure. This uses an innovative technique of rapidly “stamping out” the definition using a small number of patterns commonly found in software architecture. The patterns, their instantiation, and any further language details are described using precise class diagrams and OCL, this enables the definition to be easily understood. The main focus of the 2U approach is on the static part of the definition. A further concern when modelling software, using languages such as the UML, is describing the dynamic behaviour of the system over time. The contribution of this paper is to provide a template that can be used to “stamp out” the dynamic part of the UML 2.0 infrastructure. We argue for the suitability of the dynamic template because it makes little commitment to concrete abstractions and can, therefore, be used to support a broad spectrum of behavioural languages

    A pattern based approach to defining the dynamic infrastructure of UML 2.0.

    Get PDF
    The 2U Consortium has recently submitted a proposal for the definition of the UML 2.0 infrastructure. This uses an innovative technique of rapidly “stamping out” the definition using a small number of patterns commonly found in software architecture. The patterns, their instantiation, and any further language details are described using precise class diagrams and OCL, this enables the definition to be easily understood. The main focus of the 2U approach is on the static part of the definition. A further concern when modelling software, using languages such as the UML, is describing the dynamic behaviour of the system over time. The contribution of this paper is to provide a template that can be used to “stamp out” the dynamic part of the UML 2.0 infrastructure. We argue for the suitability of the dynamic template because it makes little commitment to concrete abstractions and can, therefore, be used to support a broad spectrum of behavioural languages

    On the Notion of Abstract Platform in MDA Development

    Get PDF
    Although platform-independence is a central property in MDA models, the study of platform-independence has been largely overlooked in MDA. As a consequence, there is a lack of guidelines to select abstraction criteria and modelling concepts for platform-independent design. In addition, there is little methodological support to distinguish between platform-independent and platform-specific concerns, which could be detrimental to the beneficial exploitation of the PIM-PSM separation-of-concerns adopted by MDA. This work is an attempt towards clarifying the notion of platform-independent modelling in MDA development. We argue that each level of platform-independence must be accompanied by the identification of an abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by balancing various design goals. We present some methodological principles for abstract platform design, which forms a basis for defining requirements for design languages intended to support platform-independent design. Since our methodological framework is based on the notion of abstract platform, we pay particular attention to the definition of abstract platforms and the language requirements to specify abstract platforms. We discuss how the concept of abstract platform relates to UML

    Platform-independent Dynamic Reconfiguration of Distributed Applications

    Get PDF
    The aim of dynamic reconfiguration is to allow a system to evolve incrementally from one configuration to another at run-time, without restarting it or taking it offline. In recent years, support for transparent dynamic reconfiguration has been added to middleware platforms, shifting the complexity required to enable dynamic reconfiguration to the supporting infrastructure. These approaches to dynamic reconfiguration are mostly platform-specific and depend on particular implementation approaches suitable for particular platforms. In this paper, we propose an approach to dynamic reconfiguration of distributed applications that is suitable for application implemented on top of different platforms. This approach supports a platform-independent view of an application that profits from reconfiguration transparency. In this view, requirements on the ability to reconfigure components are expressed in an abstract manner. These requirements are then satisfied by platform-specific realizations

    The role of the RM-ODP computational viewpoint concepts in the MDA approach

    Get PDF
    An MDA design approach should be able to accommodate designs at different levels of platform-independence. We have proposed a design approach previously (in [2]), which allows these levels to be identified. An important feature of this approach is the notion of abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by considering various design goals. In this paper, we define a framework that makes it possible to use RM-ODP concepts in our MDA design approach. This framework allows a recursive application of the computational viewpoint at different levels of platform-independence. This is obtained by equating the RM-ODP notion of infrastructure to our notion of abstract platform
    • …
    corecore