163,062 research outputs found

    Cyber security situational awareness

    Get PDF

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    Reactive Rules for Emergency Management

    Get PDF
    The goal of the following survey on Event-Condition-Action (ECA) Rules is to come to a common understanding and intuition on this topic within EMILI. Thus it does not give an academic overview on Event-Condition-Action Rules which would be valuable for computer scientists only. Instead the survey tries to introduce Event-Condition-Action Rules and their use for emergency management based on real-life examples from the use-cases identified in Deliverable 3.1. In this way we hope to address both, computer scientists and security experts, by showing how the Event-Condition-Action Rule technology can help to solve security issues in emergency management. The survey incorporates information from other work packages, particularly from Deliverable D3.1 and its Annexes, D4.1, D2.1 and D6.2 wherever possible

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Beyond the Hype: On Using Blockchains in Trust Management for Authentication

    Full text link
    Trust Management (TM) systems for authentication are vital to the security of online interactions, which are ubiquitous in our everyday lives. Various systems, like the Web PKI (X.509) and PGP's Web of Trust are used to manage trust in this setting. In recent years, blockchain technology has been introduced as a panacea to our security problems, including that of authentication, without sufficient reasoning, as to its merits.In this work, we investigate the merits of using open distributed ledgers (ODLs), such as the one implemented by blockchain technology, for securing TM systems for authentication. We formally model such systems, and explore how blockchain can help mitigate attacks against them. After formal argumentation, we conclude that in the context of Trust Management for authentication, blockchain technology, and ODLs in general, can offer considerable advantages compared to previous approaches. Our analysis is, to the best of our knowledge, the first to formally model and argue about the security of TM systems for authentication, based on blockchain technology. To achieve this result, we first provide an abstract model for TM systems for authentication. Then, we show how this model can be conceptually encoded in a blockchain, by expressing it as a series of state transitions. As a next step, we examine five prevalent attacks on TM systems, and provide evidence that blockchain-based solutions can be beneficial to the security of such systems, by mitigating, or completely negating such attacks.Comment: A version of this paper was published in IEEE Trustcom. http://ieeexplore.ieee.org/document/8029486

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Creating a climate for food security: the business, people & landscapes in food production

    Get PDF
    AbstractBalancing human and environmental needs is urgent where food security and sustainability are under pressure from population increases and changing climates. Requirements of food security, social justice and environmental justice exacerbate the impact of agriculture on the supporting ecological environment. Viability of the Australian rural economy is intrinsically linked to food production and food security requiring systematic evaluation of climate change adaptation strategies for agricultural productivity.This food-systems research drew on global climate change literature to identify risks and adaptation. The transdisciplinary team applied specialist experience through collaboration in social science, economics and land-management to provide comprehensive methods to engage researchers and decision-makers making decisions across the food-system. Research focus on the dairy and horticulture sectors in the SW-WA and SEQld provided a comparative context in food-systems and regional economies. Expert knowledge was engaged through a series of panel meetings to test and challenge existing practice applying conceptual and empirical approaches in Structural Equation, Value-Chain, Supply-Chain modelling and Analytical Hierarchy modelling. This iterative action-research process provided immediate generation and transfer of expert knowledge across the involved sectors. The scenarios and adaptive strategies provide evidence-based pathways to strengthen food-systems; account for climate change mitigation and adaptation; and weather-proof regional economies in the face of climate change. Balancing human and environmental needs is urgent where food security and sustainability are under pressure from population increases and changing climates. Requirements of food security, social justice and environmental justice exacerbate the impact of agriculture on the supporting ecological environment. Viability of the Australian rural economy is intrinsically linked to food production and food security requiring systematic evaluation of climate change adaptation strategies for agricultural productivity.This food-systems research drew on global climate change literature to identify risks and adaptation. The transdisciplinary team applied specialist experience through collaboration in social science, economics and land-management to provide comprehensive methods to engage researchers and decision-makers making decisions across the food-system. Research focus on the dairy and horticulture sectors in the SW-WA and SEQld provided a comparative context in food-systems and regional economies. Expert knowledge was engaged through a series of panel meetings to test and challenge existing practice applying conceptual and empirical approaches in Structural Equation, Value-Chain, Supply-Chain modelling and Analytical Hierarchy modelling. This iterative action-research process provided immediate generation and transfer of expert knowledge across the involved sectors. The scenarios and adaptive strategies provide evidence-based pathways to strengthen food-systems; account for climate change mitigation and adaptation; and weather-proof regional economies in the face of climate change. The triple-bottom-line provided a comprehensive means of addressing social, economic and ecological requirements, and the modelling showed the interacting dynamics between these dimensions. In response to climate change, the agricultural sector must now optimise practices to address the interaction between economic, social and environmental investment. Differences in positions between the industry sector, the government and research sectors demonstrate the need for closer relationships between industry and government if climate change interventions are to be effectively targeted. Modelling shows that capacity for adaptation has a significant bearing on the success of implementing intervention strategies. Without intervention strategies to build viability and support, farm businesses are more likely to fail as a consequence of climate change. A framework of capitals that includes social components - cultural, human and social capital-, economic components -economic and physical capital - and ecological components -ecological and environmental capital - should be applied to address capacities. A priority assessment of climate change intervention strategies shows that strategies categorised as ‘Technology & Extension’ are most important in minimising risk from climate change impacts. To implement interventions to achieve ‘Food Business Resilience’, ‘Business Development’ strategies and alternative business models are most effective. ‘Research and Development’ interventions are essential to achieve enhanced ‘Adaptive Capacity’.The individual components of TBL Adaptive Capacity can be achieved through ‘Policy and Governance’ interventions for building ‘Social Capital’ capacity, ‘Research and Development’ will develop ‘Economic Capital’, and ‘Business Development’ strategies will build ‘Ecological Capital’.These strategic interventions will promote food security and maintain resilience in local food systems, agricultural production communities and markets, global industrial systems, and developing world food systems. Climate change mitigation and adaptation interventions reflect a rich conceptualisation drawing from the Australian context, but also acknowledging the moral context of global association.Please cite this report as:Wardell-Johnson, A, Uddin, N, Islam, N, Nath, T, Stockwell, B, Slade, C 2013 Creating a climate for food security: the businesses, people and landscapes in food production, National Climate Change Adaptation Research Facility, Gold Coast, pp. 144.Balancing human and environmental needs is urgent where food security and sustainability are under pressure from population increases and changing climates. Requirements of food security, social justice and environmental justice exacerbate the impact of agriculture on the supporting ecological environment. Viability of the Australian rural economy is intrinsically linked to food production and food security requiring systematic evaluation of climate change adaptation strategies for agricultural productivity.This food-systems research drew on global climate change literature to identify risks and adaptation. The transdisciplinary team applied specialist experience through collaboration in social science, economics and land-management to provide comprehensive methods to engage researchers and decision-makers making decisions across the food-system. Research focus on the dairy and horticulture sectors in the SW-WA and SEQld provided a comparative context in food-systems and regional economies. Expert knowledge was engaged through a series of panel meetings to test and challenge existing practice applying conceptual and empirical approaches in Structural Equation, Value-Chain, Supply-Chain modelling and Analytical Hierarchy modelling. This iterative action-research process provided immediate generation and transfer of expert knowledge across the involved sectors. The scenarios and adaptive strategies provide evidence-based pathways to strengthen food-systems; account for climate change mitigation and adaptation; and weather-proof regional economies in the face of climate change. The triple-bottom-line provided a comprehensive means of addressing social, economic and ecological requirements, and the modelling showed the interacting dynamics between these dimensions. In response to climate change, the agricultural sector must now optimise practices to address the interaction between economic, social and environmental investment. Differences in positions between the industry sector, the government and research sectors demonstrate the need for closer relationships between industry and government if climate change interventions are to be effectively targeted. Modelling shows that capacity for adaptation has a significant bearing on the success of implementing intervention strategies. Without intervention strategies to build viability and support, farm businesses are more likely to fail as a consequence of climate change. A framework of capitals that includes social components - cultural, human and social capital-, economic components -economic and physical capital - and ecological components -ecological and environmental capital - should be applied to address capacities. A priority assessment of climate change intervention strategies shows that strategies categorised as ‘Technology & Extension’ are most important in minimising risk from climate change impacts. To implement interventions to achieve ‘Food Business Resilience’, ‘Business Development’ strategies and alternative business models are most effective. ‘Research and Development’ interventions are essential to achieve enhanced ‘Adaptive Capacity’.The individual components of TBL Adaptive Capacity can be achieved through ‘Policy and Governance’ interventions for building ‘Social Capital’ capacity, ‘Research and Development’ will develop ‘Economic Capital’, and ‘Business Development’ strategies will build ‘Ecological Capital’.These strategic interventions will promote food security and maintain resilience in local food systems, agricultural production communities and markets, global industrial systems, and developing world food systems. Climate change mitigation and adaptation interventions reflect a rich conceptualisation drawing from the Australian context, but also acknowledging the moral context of global association
    corecore