80 research outputs found

    Infrared sensor-based temperature control for domestic induction cooktops

    Get PDF
    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented

    Special section on induction heating systems

    Get PDF
    This special section aims at bringing some of the most recent and interesting ideas in this area by the worldwide research community and at presenting some of the latest advancements and developments in the field of induction heating technology

    Self-adaptive overtemperature protection materials for safety-centric domestic induction heating applications

    Get PDF
    Security aspects in the household sphere have become a major concern in modern societies. In particular, regardless of the technology used, users increasingly appreciate a protection system to prevent material damage in the case of human errors or distractions during the cooking process. This paper presents a sensorless method for detecting and limiting overtemperature, unique to induction cooktops, based on their specific features, such as automatic pot detection and load power factor estimation. The protection system exploits the change in the load material properties at certain temperatures, the effect of which may be enhanced by arranging a multilayer structure comprising a low Curie temperature alloy and an aluminum layer. The proposed multilayer load exhibits two differentiated states: a normal state, where the cookware is efficiently heated, and a protection state, above the safety temperature, where the power factor abruptly decreases, limiting the overheating and making the state easily detectable by the cooktop. This method of overtemperature self-protection uses the electronics of conventional induction cooktops; therefore, no other sensors or systems are required, reducing its complexity and costs. Simulation and experimental results are provided for several cookware designs, thereby proving the feasibility of this proposal

    Towards a More Flexible, Sustainable, Efficient and Reliable Induction Cooking: A Power Semiconductor Device Perspective

    Get PDF
    Esta tesis tiene como objetivo fundamental la mejora de la flexibilidad, sostenibilidad, eficiencia y fiabilidad de las cocinas de inducción por medio de la utilización de dispositivos semiconductores de potencia: Dentro de este marco, existe una funcionalidad que presenta un amplio rango de mejora. Se trata de la función de multiplexación de potencia, la cual pretende resolverse de una manera más eficaz por medio de la sustitución de los comúnmente utilizados relés electromecánicos por dispositivos de estado sólido. De entre todas las posibles implementaciones, se ha identificado entre las más prometedoras a aquellas basadas en dispositivos de alta movilidad de electrones (HEMT) de Nitruro de Galio (GaN) y de aquellas basadas en Carburo de Silicio (SiC), pues presentan unas características muy superiores a los relés a los que se pretende sustituir. Por el contrario, otras soluciones que inicialmente parecían ser muy prometedoras, como los MOSFETs de Súper-Unión, han presentado una serie de comportamientos anómalos, que han sido estudiados minuciosamente por medio de simulaciones físicas a nivel de chip. Además, se analiza en distintas condiciones la capacidad en cortocircuito de dispositivos convencionalmente empleados en cocinas de inducción, como son los IGBTs, tratándose de encontrar el equilibrio entre un comportamiento robusto al tiempo que se mantienen bajas las pérdidas de potencia. Por otra parte, también se estudia la robustez y fiabilidad de varios GaN HEMT de 600- 650 V tanto de forma experimental como por medio de simulaciones físicas. Finalmente se aborda el cálculo de las pérdidas de potencia en convertidores de potencia resonantes empleando técnicas de termografía infrarroja. Por medio de esta técnica no solo es posible medir de forma precisa las diferentes contribuciones de las pérdidas, sino que también es posible apreciar cómo se distribuye la corriente a nivel de chip cuando, por ejemplo, el componente opera en modo de conmutación dura. Como resultado, se obtiene información relevante relacionada con modos de fallo. Además, también ha sido aprovechar las caracterizaciones realizadas para obtener un modelo térmico de simulación.This thesis is focused on addressing a more flexible, sustainable, efficient and reliable induction cooking approach from a power semiconductor device perspective. In this framework, this PhD Thesis has identified the following activities to cover such demands: In view of the growing interest for an effective power multiplexing in Induction Heating (IH) applications, improved and efficient Solid State Relays (SSRs) as an alternative to the electromechanical relays (EMRs) are deeply investigated. In this context, emerging Gallium Nitride (GaN) High‐Electron‐Mobility Transistors (GaN HEMTs) and Silicon Carbide (SiC) based devices are identified as potential candidates for the mentioned application, featuring several improved characteristics over EMRs. On the contrary, other solutions, which seemed to be very promising, resulted to suffer from anomalous behaviors; i.e. SJ MOSFETs are thoroughly analysed by electro‐thermal physical simulations at the device level. Additionally, the Short Circuit (SC) capability of power semiconductor devices employed or with potential to be used in IH appliances is also analysed. On the one hand, conventional IGBTs SC behavior is evaluated under different test conditions so that to obtain the trade‐off between ruggedness and low power losses. Moreover, ruggedness and reliability of several normally‐off 600‐650 V GaN HEMTs are deeply investigated by experimentation and physics‐based simulation. Finally, power losses calculation at die‐level is performed for resonant power converters by means of using Infrared Thermography (IRT). This method assists to determine, at the die‐level, the power losses and current distribution in IGBTs used in resonant soft‐switching power converters when functioning within or outside the Zero Voltage Switching (ZVS) condition. As a result, relevant information is obtained related to decreasing the power losses during commutation in the final application, and a thermal model is extracted for simulation purposes.<br /

    Output Power and Gain Monitoring in RF CMOS Class A Power Amplifiers by Thermal Imaging

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The viability of using off-chip single-shot imaging techniques for local thermal testing in integrated Radio Frequency (RF) power amplifiers (PA’s) is analyzed. With this approach, the frequency response of the output power and power gain of a Class A RF PA is measured, also deriving information about the intrinsic operation of its transistors. To carry out this case study, the PA is heterodynally driven, and its electrical behavior is down converted into a lower frequency thermal field acquirable with an InfraRed Lock-In Thermography (IR-LIT) system. After discussing the theory, the feasibility of the proposed approach is demonstrated and assessed with thermal sensors monolithically integrated in the PA. As crucial advantages to RF-testing, this local approach is noninvasive and demands less complex instrumentation than the mainstream commercially available solutions.Peer ReviewedPostprint (author's final draft

    Novel routes to potential packed bed absorbents for the desulphiding reaction

    Get PDF

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Space benefits: The secondary application of aerospace technology in other sectors of the economy

    Get PDF
    Over 580 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included
    corecore